精英家教网 > 初中数学 > 题目详情
17、已知抛物线y=-x2+(m+2)x+3m-20经过点(1,-3),求抛物线与x轴交点的坐标及顶点的坐标.
分析:首先把它所经过的点的坐标代入求得二次函数的解析式,然后分别令x=0,即求得与y轴的交点;令y=0,则求得与x轴的交点坐标;运用配方法求得顶点的坐标或运用公式法求得顶点的坐标.
解答:解:∵抛物线y=-x2+(m+2)x+3m-20经过(1,-3)点,
∴-12+(m+2)+3m-20=-3,
整理,得4m-19=-3,
解得m=4,
∴二次函数的解析式为y=-x2+6x-8.
令y=0,可得-x2+6x-8=0,
解得x1=2,x2=4,
∴抛物线与x轴的交点坐标为(2,0),(4,0),
∵y=-x2+6x-8=-(x-3)2+1,
∴抛物线的顶点坐标为(3,1).
点评:能够熟练根据已知条件求得待定系数的值,掌握求与x轴、y轴的交点坐标方法,能够熟练运用配方法或公式法求得二次函数的顶点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案