【题目】感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,BD=4,则DE的长为 .
【答案】探究:见解析;拓展:.
【解析】
感知:先判断出∠BAP=∠DPC,进而得出结论;
探究:根据两角相等,两三角形相似,进而得出结论;
拓展:利用△BDP∽△CPE得出比例式求出CE,结合三角形内角和定理证得AC⊥AB且AC=AB;最后在直角△ADE中利用勾股定理来求DE的长度.
解:感知:∵∠APD=90°,
∴∠APB+∠DPC=90°,
∵∠B=90°,
∴∠APB+∠BAP=90°,
∴∠BAP=∠DPC,
∵AB∥CD,∠B=90°,
∴∠C=∠B=90°,
∴△ABP∽△PCD;
探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,
∴∠BAP+∠B=∠APD+∠CPD.
∵∠B=∠APD,
∴∠BAP=∠CPD.
∵∠B=∠C,
∴△ABP∽△PCD;
拓展:同探究的方法得出,△BDP∽△CPE,
∴,
∵点P是边BC的中点,
∴BP=CP=3,
∵BD=4,
∴,
∴CE=,
∵∠B=∠C=45°,
∴∠A=180°﹣∠B﹣∠C=90°,
即AC⊥AB且AC=AB=6,
∴AE=AC﹣CE=6﹣=,AD=AB﹣BD=6﹣4=2,
在Rt△ADE中,DE===.
故答案是:.
科目:初中数学 来源: 题型:
【题目】关于反比例函数,下列说法不正确的是( )
A. 函数图象分别位于第一、第三象限
B. 当x>0时,y随x的增大而减小
C. 若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
D. 函数图象经过点(1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=ABAC④OE=AD⑤S△APO=,正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点,分别连接AC、CD、AD.
(1)求抛物线的函数表达式以及顶点D的坐标;
(2)在抛物线上取一点P(不与点C重合),并分别连接PA、PD,当△PAD的面积与△ACD的面积相等时,求点P的坐标;
(3)将(1)中所求得的抛物线沿A、D所在的直线平移,平移后点A的对应点为A′,点C的对应点为C′,点D的对应点为D′,当四边形AA′C′C是菱形时,求此时平移后的抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据要求,解答下列问题:
(1)①方程x2-x-2 =0的解为__________
②方程x2-2x-3 =0的解为_______
③方程x2-3x-4 =0的解为_______
...
(2)根据以上方程特征及其解得特征,请猜想:
①方程x2-9x-10=0的解为_______
②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性。
(3)应用:关于x的方程______的解为x1 =-1,x2 =n+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴正半轴相交,其顶点坐标为,下列结论:①;②;③;④方程有两个相等的实数根,其中正确的结论是________.(只填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某仓储中心有一斜坡AB,其坡比为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平面上.
(1)求斜坡AB的水平宽度BC;
(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5 m,EF=2 m.将货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(≈2.236,结果精确到0.1 m)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com