【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.
(1)AC= cm;
(2)若点P恰好在AB的垂直平分线上,求此时t的值;
(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?
【答案】(1)3;(2)t为秒或秒;(3)t为3秒或秒或6秒.
【解析】
(1)根据勾股定理可以得到,代入数值计算即可;
(2)点P恰好在AB的垂直平分线上时,分两种情况讨论:①当点P运动到点D时;②当点P运动到点E时,根据图形计算即可;
(3)若△ACP是等腰三角形,分情况讨论:①当AP=AC时;②当CA=CP时,利用勾股定理,三角形面积相等来计算即可.
(1)如甲图所示:
∵∠ACB=90°,
∴△ABC是直角三角形,
在ABC中,由勾股定理得,
,
又AB=5cm,BC=4cm,
,
故答案为3;
(2)点P恰好在AB的垂直平分线上时,
如乙图所示:
∵DE是线段AB的垂直平分线,
∴AD=BD=,AE=BE,
①当点P运动到点D时,
∵AB=5cm,点P从点A出发,以每秒1cm的速度运动,
∴=秒,
②当点P运动到点E时,设BE=x,则EC=4﹣x,
∵AE=BE,
∴AE=x,
在Rt△AEC中,由勾股定理得,
∵AC=3,AE=x,EC=4﹣x,
∴32+(4﹣x)2=, 解得:x=,
∴AB+BE=,
∴秒,
即点P在AB的垂直平分线上时,运动时间t为秒或秒,
故答案为:秒或秒;
(3)运动过程中,△ACP是等腰三角形,
①当AP=AC时,如丙图(1)所示:
∵AC=3,
∴AP=3,
∴=3秒,
②当CA=CP时,如丙图(2)所示:
若点P运动到时,AC=C,过点C作CH⊥AB
交AB于点H,
∵,
AB=5cm,BC=4cm,AC=3cm,
∴CH=cm,
在Rt△AHC中,由勾股定理得,
AH=cm,
又∵A=2AH=cm,
∴秒,
若点P运动到时,AC=C,
∵AC=3cm,
∴C=3cm,
又∵B=BC﹣C,
∴B=1cm,
∴AP+B=5+1=6cm,
∴=6秒,
综合所述,△ACP是以AC为腰的等腰三角形时,t为3秒或秒或6秒,
故答案为:3秒或秒或6秒.
科目:初中数学 来源: 题型:
【题目】甲乙两家商场中品牌质量规格等都相同的商品,在甲乙两商场的标价都相同,在双12时两家商场进行促销活动.甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元,但不足400元,少付100元,满400元,但不足600元,少付200元;乙商场按顾客购买商品的总金额打6折促销,
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)(列方程解应用题)小明与小亮分别在甲,乙两家商场中各买了一双鞋,根据下面两人的对话求出鞋的标价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为________;
(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分分)小明、小华在一栋高楼前感慨楼房真高.小明说:“这楼起码层!”小华却不以为然:“层?我看没有!”小明说:“有本事,就让我们一起来测量吧!”
如图,矩形表示楼体,小明、小华在楼体两侧各选、两点,使得、、、四点在同一直线上,利用皮尺和侧倾器测得如下数据, 米, 米, , .
()请你帮助他们算一算楼高.(结果保留根号)
()若每层楼按米计算,你支持小明还是小华的观点呢?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:(1)如图,已知:在等腰直角中,,,直线经过点,直线,直线,垂足分别为点、.小明观察图形特征后猜想线段、和之间存在的数量关系,请你判断他的猜想是否正确,并说明理由.
(2)如图,将(1)中的条件改为:为等边三角形,、、三点都在直线上,并且有,请问结论是否成立?并说明理由.
(3)如图,若将(1)中的三角形变形为一般的等腰三角形,中,,,其中为任意锐角或钝角,、、三点都在直线上.问:满足什么条件时,结论仍成立?直接写出条件即可.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,平分.将一块足够大的三角尺的直角顶点落在射线的任意一点上,并使三角尺的一条直角边与(或的延长线)交于点,另一条直角边与交于点.
(1)如图1,当与边垂直时,证明:;
(2)如图2,把三角尺绕点旋转,三角尺的两条直角边分别交于点,在旋转过程中,与相等吗?请直接写出结论: (填,,),
(3)如图3,三角尺绕点继续旋转,三角尺的一条直角边与的延长线交于点,另一条直角边与交于点.在旋转过程中,与相等吗?若相等,请给出证明;若不相等,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足为N,过点E作AB延长线的垂线,垂足为M.
(1)求证:BM=CN;
(2)若,AB=2,AC=8,求BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+2与反比例函数y=的图象相交于A(2,m),B(﹣4,n)两点.
(1)求反比例函数的解析式;
(2)根据所给条件,请直接写出不等式x+2>的解集: ;
(3)过点B作BC⊥x轴,垂足为C,连接AC,求S△ABC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com