精英家教网 > 初中数学 > 题目详情
5.已知:x=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$,y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$.那么$\frac{y}{x}$+$\frac{x}{y}$=98.

分析 把x与y分母有理化得到结果,原式通分并利用同分母分式的加法法则计算即可得到结果.

解答 解:∵x=$\frac{(\sqrt{3}-\sqrt{2})^{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=5-2$\sqrt{6}$,y=$\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$=5+2$\sqrt{6}$,
∴原式=$\frac{{x}^{2}+{y}^{2}}{xy}$=$\frac{49-20\sqrt{6}+49+20\sqrt{6}}{25-24}$=98,
故答案为:98

点评 此题考查了二次根式的化简求值,以及分式的加减法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,AD是△ABC的高,AE是中线,若AD=5,CE=4,则△AEB的面积为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数且k≠0),则称点P′为点P的“k类生长点”.
(1)点P(1,4)的“2类生长点”P′的坐标为(9,6);
(2)若点P(a,b)在第一象限内一点,点P的“1类生长点”为P′点,点A(3,4),若四边形OPP′A是菱形,试求该菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,已知∠A=40°,∠B=60°.
(1)尺规作图:作边AC的垂直平分线,交AB于D,交AC于E(保留作图痕迹,不要求写作法和证明);
(2)在(1)作图条件下,连接CD,求证:CD平分∠ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AC=BC,D是AB的中点,CE∥AB,CE=$\frac{1}{2}$AB.
(1)求证:四边形CDBE是矩形.
(2)若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在四边形ABCD中,AC∥BD,AB=13cm,AC=14cm,CD=15cm,BD=28cm.在直线BD上,动点P从B点出发向右运动,同时,另一个动点Q从D点出发向左运动.
(1)已知:动点P、Q的速度分别是1cm/s和2cm/s.求:运动多长时间后,以A、C、P、Q四点为顶点的四边形是平行四边形?(写出求解过程)
(2)若以A、C、P、Q四点为顶点的四边形是矩形,求:P、Q两点运动速度之比.(不写求解过程)VP:VQ=5:9或19:23.
(3)若以A、C、P、Q四点为顶点的四边形是菱形,求:P、Q两点运动速度之比.(不写求解过程,结果可以不化简)VP:VQ=(5+2$\sqrt{13}$):(9-2$\sqrt{13}$)或VP:VQ=(19+2$\sqrt{13}$):(23-2$\sqrt{13}$),.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,在矩形ABCD中,点E是BC边上一点,且AE=DE.
求证:点E是BC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:${3^{-2}}-{(-\frac{1}{3})^2}+{3^0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各式与(x-$\frac{1}{2}$)2相等的是(  )
A.x2-$\frac{1}{4}$B.x2-x+$\frac{1}{4}$C.x2+2x+$\frac{1}{4}$D.x2-2x+$\frac{1}{4}$

查看答案和解析>>

同步练习册答案