分析 先把方程变形为:(2x-1)(2y-1)=7,根据x,y为整数和(2x-1)(2y-1)=7=1×7=7×1=-1×(-7)=-7×(-1),得到方程组$\left\{\begin{array}{l}{2x-1=1}\\{2y-1=7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=7}\\{2y-1′=1}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-1}\\{2y-1=-7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-7}\\{2y-1=-1}\end{array}\right.$,得到原方程的四组解.
解答 解:∵2xy-x-y-3=0,
∴4xy-2x-2y-6=0
∴4xy-2x-2y+1=7,
∴(2x-1)(2y-1)=7
∵x,y为整数,
∴(2x-1)与(2y-1)也是整数,
而(2x-1)(2y-1)=7=1×7=7×1=-1×(-7)=-7×(-1),
∴$\left\{\begin{array}{l}{2x-1=1}\\{2y-1=7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=7}\\{2y-1′=1}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-1}\\{2y-1=-7}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1=-7}\\{2y-1=-1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=-3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$.
点评 本题是非一次不定方程(组),主要考查了求二元二次方程整数解的方法.代数式的变形能力以及整数的性质.等式的性质,分解因式,解本题的关键是把原方程变形为4xy-2x-2y+1=7之后的分解因式,难点是方程两边同时乘以2.
科目:初中数学 来源: 题型:解答题
| 捐 款 (元) | 5 | 10 | 20 | A | 30 |
| 人 数 | 18 | 20 | B | 4 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x | -1 | 0 | 1 | 2 | 3 |
| y | 2 | 0 | 2 | 8 | 18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com