精英家教网 > 初中数学 > 题目详情

【题目】8分)如图,ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)DBH=DAC;(2)BDH≌△ADC.

【答案】证明过程见解析

【解析】

试题分析:题目中有直角就可以得到角互余,再用互余的

性质就可以得到角相等,要证BDH≌△ADC,只需根据

全等的判定找条件(1)中证了两个角,又已知一条边

即可证的全等.

试题解析:(1) ADBC, ADC=ADB=90°.

BEAC, BEA=BEC=90°.

DBH+C=90°DAC+C=90° DBH=DAC.

(2)由(1)得DBH=DAC, BDH=CDA=90° AD=BD ∴△BDH≌△ADC(ASA)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC的中点,点EF分别在线段AD及其延长线上,且DE=DF.给出下列条件:

①BE⊥EC②BF∥CE③AB=AC

从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A20)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是(

A. 20 B. ﹣11 C. ﹣21 D. ﹣1﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,点EF分别在ABAC上,AE=AFBFCE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做规形图,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

(1)观察规形图,试探究∠BDC与∠A、B、C之间的关系,并说明理由;

(2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+ACX=__________°;

②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度数;

③如图4,ABD,ACD10等分线相交于点G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断OMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OCODOE,且OC平分∠AOD2=31.

(1)若∠1=18°,求∠COE的度数;

(2)若∠COE=70°,求∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OAOC同时绕点O分别以每秒12°,每秒的速度按逆时针方向旋转,旋转后的射线OAOC分别记为OMON,设旋转时间为t秒.已知t<30,AOB=114°.

(1)求∠AOC的度数;

(2)在旋转的过程中,当射线OMON重合时,求t的值;

(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.

查看答案和解析>>

同步练习册答案