精英家教网 > 初中数学 > 题目详情

【题目】如图,∠A=∠B=50°,P AB 中点,点 M 为射线 AC 不与点 A 重合的任意一点,连接 MP, 并使MP 的延长线交射线BD 于点N,设∠BPN=α.

(1)求证:△APM≌△BPN;

(2) MN=2BN 时,求α的度数;

(3)BPN 为锐角三角形时,直接写出α的取值范围.

【答案】(1)证明见解析;(2)α=B=50°;(3)40°<α<90°.

【解析】

根据AAS可证明△APM≌△BPN.

由(1)中的全等得MN=2PN,所以BN=PN,由等边对等角可得结论.

三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形内部,只有锐角三角形的外心在三角形的内部,所以根据题目中要求可知:△BPN是锐角三角形,由三角形的内角和可得结论.

(1)∵PAB的中点,

∴PA=PB,

△APM△BPN中,

∴△APM≌△BPN(ASA);

(2)(1)得:△APM≌△BPN,

∴PM=PN,

∴MN=2PN,

∵MN=2BN,

∴BN=PN,

∴α=∠B=50°;

(3)∵△BPN是锐角三角形,

∵∠B=50°,

∴40°<∠BPN<90°,即40°<α<90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于平面内的∠M和∠N,若存在一个常数k0,使得∠MkN360°,则称∠N为∠Mk系补周角.如若∠M90°,∠N45°,则∠N为∠M6系补周角.

1)若∠H120°,则∠H4系补周角的度数为

2)在平面内ABCD,点E是平面内一点,连接BEDE

①如图1,∠D60°,若∠B是∠E3系补周角,求∠B的度数;

②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=nABE,∠CDF=nCDE(其中n为常数且n1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠Fk系补周角,并直接写出此时的k值(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一次函数的图象与x轴、y轴交于点AB,以线段AB为边在第一象限内作等边三角形ABC

1)求ABC的面积。

2)如果在第二象限内有一点P),试用含有a的代数式表示四边形ABPO的面积,并求出当ABP的面积与ABC的面积相等时a的值。

3)在x轴上,是否存在点M,使MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD为平行四边形延长AD到E使DE=AD连接EBECDB添加一个条件不能使四边形DBCE成为矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P在第一象限,△ABP是边长为2的等边三角形,当点Ax轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是______;若将△ABPPA边长改为,另两边长度不变,则点P到原点的最大距离变为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点EFGH分别在边ABBCCDDA上,点P在矩形ABCD内.若AB4cmBC6cmAECG3cmBFDH4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为_______cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:整式与分式
(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)
(2)( ﹣x+1)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:两个等边三角形ABDBCE,连结AECD

求证:(1AE=CD;

2AEDC之间的夹角为60°;

3AECD的交点设为H,BH平分∠AHC.

查看答案和解析>>

同步练习册答案