【题目】已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上
(I)如图①,当EP⊥BC时,①求证CE=CN;②求CN的长;
(II)请写出线段CP的长的取值范围,及当CP的长最大时MN的长。
【答案】(1)①见解析②(2)O≤CP≤5,MN最大值为
【解析】
(1)先由折叠得出∠AEM=∠PEM,AE=PE,再判断出AB∥EP,进而判断出CN=CE,再利用锐角三角函数即可得出CN的长;(2)先确定出PC的最大值和最小值的位置,即可得出PC的范围,最后用折叠的性质与勾股定理即可得出结论.
(1)①∵△AME沿直线MN翻折,点A落在点P处,
∴△AME≌△PME,
∴∠AME=∠PEM,AE=PE,
∵四边形ABCD是矩形,
∴AB⊥BC,
∵EP⊥BC,
∴AB∥EP,
∴∠AME=∠PEM,
∴∠AEM=∠AME,
∴AM=AE,
∵四边形ABCD是矩形,
∴AB∥AE,
∴
∴CN=CE
②设CN=CE=x,
∵四边形ABCD是矩形,AB=4,BC=3,
∴AC=5,
∴PE=AE=5-x,
∵EP⊥BC,
∴,
∴
∴x=
即CN=
(2)∵四边形ABCD是矩形,
∴∠ABC=90°,
在Rt△ABC中,AB=4,BC=3,根据勾股定理得AC=5,
由折叠可知AE=PE,
由三角形的三边关系得,PE+CE>PC,
∴AC>PC,
∴PC<5,
∴点E是AC中点时,PC的最小为0,当点E和点C重合时,PC最大为AC=5,
∴O≤CP≤5,
如图,当点C、N、E重合时,PC=BC+BP=5,
∴BP=2,
由折叠得PM=AM,
在Rt△PBM中,PM=4-BM,根据勾股定理得PM2-BM2=BP2,
∴(4-BM)2-BM2=42,
∴BM=
在Rt△BCM中,根据勾股定理得MN=
即当CP最大时,MN=.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3).
(1)求抛物线的表达式;
(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+5与y轴交于点A,与x轴交于点B.抛物线y=﹣x2+bx+c过A、B两点.
(1)点A,B的坐标分别是A ,B ;
(2)求抛物线的解析式;
(3)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一动点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意填空,完成本题的解答、
(I)解不等式①,得
(II)解不等式②,得
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F
(1)求∠EDF的度数;
(2)若AD=6,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A和点B的坐标分别为、,线段CD与AB关于点中心对称,点A、B的对应点分别为点C、D
当时,画出线段CD,并求四边形ABCD的面积;
当______时,四边形ABCD为正方形;
当时,连接PA、PB,在OA上有一点M,且,则点M的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com