精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x﹣6与x轴交于点A(﹣6,0),B(点A在点B的左侧),与y轴交于点C,直线BD与抛物线交于点D,点D与点C关于该抛物线的对称轴对称.

(1)连接CD,求抛物线的表达式和线段CD的长度;
(2)在线段BD下方的抛物线上有一点P,过点P作PM∥x轴,PN∥y轴,分别交BD于点M,N.当△MPN的面积最大时,求点P的坐标.

【答案】
(1)

解:将A点坐标代入函数解析式,得

36a﹣12﹣6=0.

解得a=

抛物线的解析式为y= x2+2x﹣6;

当x=0时y=﹣6.即C(0,﹣6).

当y=﹣6时,﹣6= x2+2x﹣6,

解得x=0(舍),x=﹣4,即D(﹣4,﹣6).

CD=0﹣(﹣4)=4,

线段CD的长为4;


(2)

解:如图

当y=0时, x2+2x﹣6=0.解得x=﹣6(不符合题意,舍)或x=2.

即B(2,0).

设BD的解析式为y=kx+b,将B、D点坐标代入函数解析式,得

解得

BD的解析式为y=x﹣2,

当x=0时,y=﹣2,即E(0,﹣2).

OB=OE=2,∠BOE=90°

∠OBE=∠OEB=45°.

∵点P作PM∥x轴,PN∥y轴,

∴∠PMN=∠PNM=45°,∠NPM=90°.

∵N在BD上,设N(a,a﹣2);P在抛物线上,设P(a, a2+2a﹣6).

PN=a﹣2﹣( a2+2a﹣6)=﹣ a2﹣a+4=﹣ (a+1)2+

S= PN2= [﹣ (a+1)2+ ]2

当a=﹣1时,S最大= ×( 2=

a=﹣1, a2+2a﹣6=﹣

点P的坐标为(﹣1,﹣ ).


【解析】(1)根据待定系数法,可得函数解析式;根据自变量与函数值的对应关系,可得C、D点坐标,根据平行于x轴直线上两点间的距离是较大的小横坐标减较的横坐标,可得答案;(2)根据待定系数法,可得BD的解析式,根据自变量与函数值的对应关系,可得E点坐标,根据等腰三角形的性质,可得∠OBE=∠OEB=45°,根据平行线的性质,可得∠PMN=∠PNM=45°,根据直角三角形的判定,可得∠P,根据三角形的面积公式,根据二次函数的性质,可得a的值,再根据自变量与函数值的对应关系,可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:在平面直角坐标系中,每个小正方形的边长为1,ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各小题:

(1)把ABC向下平移7个单位,再向右平移7个单位,得到A1B1C1,画出A1B1C1

(2)画出A1B1C1关于x轴对称的A2B2C2

画出A1B1C1关于y轴对称的A3B3C3

(3)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠BAD=25°,∠ADC=115°,O为AB的中点,以点O为圆心、AO长为半径作圆,恰好点D在⊙O上,连接OD,若∠EAD=25°,下列说法中不正确的是(

A.D是劣弧 的中点
B.CD是⊙O的切线
C.AE∥OD
D.∠DOB=∠EAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列各小题
(1)计算2sin260°+ sin30°cos30°;
(2)请你画出如图所示的几何体的三视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD交AC于点F,延长AC到点P,连接PB.

(1)若PF=PB,求证:PB是⊙O的切线;
(2)如果AB=10,BC=6,求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.

(1)如图,点D在线段BC的延长线上移动,若∠BAC=40,求∠DCE的度数

(2)设∠BAC=m,∠DCE=n.

如图,当点D在线段BC的延长线上移动时,mn之间有什么数量关系?请说明理由.

当点D在直线BC上(不与B、C重合)移动时,mn之间有什么数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,DBC上任意一点,过点D分别向AB、AC引垂线,垂足分别为点E、F.

(1)如图①,当点DBC的什么位置时,DE=DF?并证明;

(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?请写出所有的全等三角形(不必证明);

(3)如图②,过点CAB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.

(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案