精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.

(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵抛物线的解析式为y=﹣ [(x﹣2)2+n]=﹣ (x﹣2)2 n,

∴抛物线的对称轴为直线x=2,

∵点A和点B为对称点,

∴2﹣(m﹣2)=2m+3﹣2,解得m=1,

∴A(﹣1,0),B(5,0),

把A(﹣1,0)代入y=﹣ [(x﹣2)2+n]得9+n=0,解得n=﹣9


(2)

解:作ND∥y轴交BC于D,如图2,

抛物线解析式为y=﹣ [(x﹣2)2﹣9]=﹣ x2+ x+3,

当x=0时,y=3,则C(0,3),

设直线BC的解析式为y=kx+b,

把B(5,0),C(0,3)代入得 ,解得

∴直线BC的解析式为y=﹣ x+3,

设N(x,﹣ x2+ x+3),则D(x,﹣ x+3),

∴ND=﹣ x2+ x+3﹣(﹣ x+3)=﹣ x2+3x,

∴SNBC=SNDC+SNDB= 5ND=﹣ x2+ x=﹣(x﹣ 2+

当x= 时,△NBC面积最大,最大值为


(3)

<>解:存在.

∵B(5,0),C(0,3),

∴BC= =

当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,

设PM=t,则CM=t,MB= ﹣t,

∵∠MBP=∠OBC,

∴△BMP∽△BOC,

= = ,即 = = ,解得t= ,BP=

∴OP=OB﹣BP=5﹣ =

此时P点坐标为( ,0);

当∠MPB=90°,则MP=MC,

设PM=t,则CM=t,MB= ﹣t,

∵∠MBP=∠CBO,

∴△BMP∽△BCO,

= = ,即 = = ,解得t= ,BP=

∴OP=OB﹣BP=5﹣ =

此时P点坐标为( ,0);

综上所述,P点坐标为( ,0)或( ,0).


【解析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣ [(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣ x+3,设N(x,﹣ x2+ x+3),则D(x,﹣ x+3),根据三角形面积公式,利用SNBC=SNDC+SNDB可得SBCN=﹣ x2+ x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC= ,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB= ﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB= ﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用待定系数法求函数解析式;理解坐标与图形的性质;掌握相似三角形的判定,能运用相似比计算线段的长或表示线段之间的关系;学会运用分类讨论的思想解决数学问题.
【考点精析】本题主要考查了二次函数的性质和比例线段的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是a/b=m/n,或写成a:b=m:n才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x﹣6与x轴交于点A(﹣6,0),B(点A在点B的左侧),与y轴交于点C,直线BD与抛物线交于点D,点D与点C关于该抛物线的对称轴对称.

(1)连接CD,求抛物线的表达式和线段CD的长度;
(2)在线段BD下方的抛物线上有一点P,过点P作PM∥x轴,PN∥y轴,分别交BD于点M,N.当△MPN的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.
为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:

(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;
(2)求这天5路公共汽车平均每班的载客量;
(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式:a0=1a2a3=a522=35+24÷8×1=0x2+x2=2x2,其中正确的是(  )

A①②③B①③⑤

C②③④D②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为对角线AC延长线上的一点.

(1)若四边形ABCD是菱形,求证:BEDE.

(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,给出证明;若是假命题,举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,其面积标记为S1 , 以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 , …,按照此规律继续下去,则S9的值为(

A.( 6
B.( 7
C.( 6
D.( 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由边长为1的小正方形组成的5×6的网格中,ABC的三个顶点均在格点上,请按要求解决下列问题:

(1)通过计算判断ABC的形状;

(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出 ABCD的面积.

查看答案和解析>>

同步练习册答案