【题目】在“世界家庭日”前夕,某校团委随机抽取了n名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查.问卷中的家庭活动方式包括:A.在家里聚餐; B.去影院看电影; C.到公园游玩; D.进行其他活动
每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如图所示的统计图,根据统计图提供的信息,解答下列问题:
(1)求n的值;
(2)四种方式中最受学生喜欢的方式为__(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为_____ .
(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.
【答案】
(1)
解:n=30+40+70+60=200.
(2)
解:∵C的学生人数最多,
∴四种方式中最受学生喜欢的方式为C,
×100%=35%,
故答案为:C,35%.
(3)
解:1800×=270(人),
答:该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数为270人.
【解析】(1)根据条形图,把A,B,C,D的人数加起来,即可解答;
(2)C的学生人数最多,即为四种方式中最受学生喜欢的方式;用C的人数÷总人数,即可得到百分比;
(3)分别计算出喜欢C方式的学生人数、喜欢B方式的学生的人数,作差即可解答.
【考点精析】认真审题,首先需要了解条形统计图(能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况).
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )
A.1对
B.2对
C.3对
D.4对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.
类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.
(1)设扇环的面积为S扇环 , 的长为l1 , 的长为l2 , 线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代数式表示S扇环 , 并证明;
(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.
猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为______.
探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.
应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求点B到AC的距离.
(2)求线段CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com