精英家教网 > 初中数学 > 题目详情
如图所示的图形中成轴对称的是(  )
分析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案,
解答:解:根据轴对称图形的定义可得C答案中5成轴对称,
故选:C.
点评:此题主要考查了轴对称,关键是掌握沿直线对折,直线两旁的部分能完全重合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•岳阳)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示,如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2
(1)求C1和C2的解析式;
(2)如图②,过点B作直线BE:y=
1
3
x-1交C1于点E(-2,-
5
3
),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;
(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:中考真题 题型:解答题

我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2
(1)求C1和C2的解析式;
(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;
(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2

(1)求C1和C2的解析式;

(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;

(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(湖南岳阳卷)数学(带解析) 题型:解答题

我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2
(1)求C1和C2的解析式;
(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;
(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图。

(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得,画出

(2)作出△ABC关于坐标原点O成中心对称的

(3)作出△ABC 关于y轴的轴对称图形

查看答案和解析>>

同步练习册答案