精英家教网 > 初中数学 > 题目详情

【题目】如图①,ABC三地依次在一直线上,两辆汽车甲、乙分别从AB两地同时出发驶向C地,如图②,是两辆汽车行驶过程中到C地的距离skm)与行驶时间th)的关系图象,其中折线段EFFG是甲车的图象,线段OM是乙车的图象.

1)图②中,a的值为   ;点M的坐标为   

2)当甲车在乙车与B地的中点位置时,求行驶的时间t的值.

【答案】1240,(4240);(2t的值为2h).

【解析】

(1)先求出直线EF的解析式,进而求出点N的坐标,再根据点N的坐标求出直线OM的解析式,进而求出直线FG的解析式,即可得出a的值;

(2)根据乙车行驶的路程与行驶时间的关系求解即可.

(1)EF的解析式为yk1x+150

因为直线EF经过(2.50),所以2.5k1+1500,解得k1=﹣60

所以EF的解析式为y=﹣60x+150

因为点MEF上,所以点N的纵坐标为:﹣60×1.25+15075

因为点N的坐标为(1.2575)

设直线OM的解析式为yk2x,因为直线OM经过点N,所以1.25k275,解得k260

所以直线OM的解析式为y60x

所以直线FG的解析式为y60x150

所以点G的纵坐标,即a60×6.5150240

所以点M的横坐标为240÷604,即点M的坐标为(4240)

故答案为:240(4240)

(2)由点M的坐标可知乙车的速度为240÷460(千米/)

当甲车在乙车与B地的中点位置时,行驶的时间t的值为=2(h)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABACAD是角平分线,FBA延长线上的一点,AE平分∠FACDEBAAEE.求证:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么ACD的周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=mx2+(2﹣2m)x+m﹣2(m是常数).

(1)无论m取何值,该抛物线都经过定点 D.直接写出点D的坐标.

(2)当m取不同的值时,该抛物线的顶点均在某个函数的图象上,求出这个函数的表达式.

(3)若在0≤x≤1的范围内,至少存在一个x的值,使y>0,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yax2+bxyax+b(ab0)的图象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB90°OC2BOAC6,点B的坐标为(10),抛物线y=﹣x2+bx+c经过AB两点.

1)求点A的坐标;

2)求抛物线的解析式;

3)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PEDE

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.

(1)求出y2x之间的函数关系式;

(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图为了测量来雁塔的高度E处用高为1.5 m的测角仪AE测得塔顶C的仰角为30°,再向塔身前进10.4 m,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1 m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.

(1)求A、B两种奖品的单价各是多少元?

(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.

查看答案和解析>>

同步练习册答案