精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点.点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm .当点Q到达顶点C时,P,Q同时停止运动.设P, Q两点运动时间为t秒.

(1)当t为何值时,PQ∥BC ?

(2)设四边形PQCB的面积为y,求y关于t的函数解析式;

(3)四边形PQCB的面积与△APQ面积比能为3:2吗?若能,求出此时t的值;若不能,请说明理由;

(4)当t为何值时,△AEQ为等腰三角形?

【答案】(1)t=;(2)y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;理由见解析;(4)当t为秒时,△AEQ为等腰三角形.

【解析】

1)先在中,由勾股定理求出,再由,得出,然后由,根据平行线分线段成比例定理得出,列出比例式,求解即可;

2)根据,即可得出关于的函数关系式;

3)根据题意知四边形面积是面积的,列出方程,解方程即可;

4为等腰三角形时,分三种情况讨论:①;②;③,每一种情况都可以列出关于的方程,解方程即可.

(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,

∴AB=10cm.

∵BP=t,AQ=2t,

∴AP=AB﹣BP=10﹣t.

∵PQ∥BC,

解得t=

(2)∵S四边形PQCB=S△ACB﹣S△APQACBC﹣APAQsinA

∴y=×6×8﹣×(10﹣t)2t

=24﹣t(10﹣t)

t2﹣8t+24,

即y关于t的函数关系式为y=t2﹣8t+24;

(3)四边形PQCB面积能是△ABC面积的,理由如下:

由题意,得t2﹣8t+24=×24,

整理,得t2﹣10t+12=0,

解得t1=5﹣,t2=5+(不合题意舍去).

故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣

(4)△AEQ为等腰三角形时,分三种情况讨论:

①如果AE=AQ,那么10﹣2t=2t,解得t=

②如果EA=EQ,那么(10﹣2t)×=t,解得t=

③如果QA=QE,那么2t×=5﹣t,解得t=

故t为秒时,△AEQ为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点PA点出发,沿着AB以每秒4cm的速度向B点运动;同时点QC点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.

(1)x为何值时,PQ∥BC;

(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的OCE相切于点CCEAB的延长线于点E,直径AB18,∠A30°,弦CDAB,垂足为点F,连接ACOC,则下列结论正确的是______.(写出所有正确结论的序号)

扇形OBC的面积为π;

③△OCF∽△OEC

若点P为线段OA上一动点,则APOP有最大值20.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数 yax2+bx+ca≠0)的图象与 x 轴交于点 A(﹣1,0),对称轴为直线 x=1,与 y 轴的交点 B 在(0,2)和(0,3)之间(包括这两点),下列结论正确的是_______________

①当 x>3 时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4acb2<8a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺市某校想知道学生对遥远的赫图阿拉”,“旗袍故里等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:

(1)本次调查了多少名学生?

(2)补全条形统计图;

(3)该校共有500名学生,请你估计十分了解的学生有多少名?

(4)在被调查十分了解的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一个量角器与一张等边三角形(△ABC)纸片放置成轴对称图形,CDAB,垂足为D,半圆(量角器)的圆心与点D重合,此时,测得顶点C到量角器最高点的距离CE=2cm,将量角器沿DC方向平移1cm,半圆(量角器)恰与△ABC的边ACBC相切,如图2,AB的长为__________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系,将点A向右平移6个单位长度,得到点B.

(1)直接写出点B的坐标;

(2)若抛物线y=-x2+bx+c经过点A,B求抛物线的表达式;

(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段AB有且只有一个公共点时,求抛物线顶点横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD于E.

(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;

(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)x(单位:cm)的变化而变化.

1)请直接写出Sx之间的函数关系式(不要求写出自变量x的取值范围)

2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

同步练习册答案