精英家教网 > 初中数学 > 题目详情

【题目】如图,以AB为直径的OCE相切于点CCEAB的延长线于点E,直径AB18,∠A30°,弦CDAB,垂足为点F,连接ACOC,则下列结论正确的是______.(写出所有正确结论的序号)

扇形OBC的面积为π;

③△OCF∽△OEC

若点P为线段OA上一动点,则APOP有最大值20.25

【答案】①③④.

【解析】

利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC的面积,于是可对②进行判断;利用切线的性质得到OCCE,然后根据相似三角形的判定方法对③进行判断;由于APOP=-(OP-)2+,则可利用二次函数的性质对④进行判断.

∵弦CDABAB是直径,

,所以①正确;

∴∠BOC=2A=2×30°=60°,

∴扇形OBC的面积=,所以②错误;

∵⊙OCE相切于点C

OCCE

∴∠OCE=90°,

∵∠COF=EOC,∠OFC=OCE

∴△OCF∽△OEC,所以③正确;

APOP=(9-OP)OP= -(OP-)2+

OP=时,APOP的最大值为=20.25,所以④正确,

故答案为:①③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y=﹣x﹣1x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=x2+bx+cx轴分别交于点A、C,直线x=﹣1x轴交于点D.

(1)求抛物线的解析式;

(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;

(3)若点Q在第三象限内,且tan∠AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求函数y=kx+b和y=的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.

(1)求从袋中摸出一个球是黄球的概率;

(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个黑球的概率是,求从袋中取出黑球的个数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,yx的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,∠BAC90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CDBB'于点E,设∠ABC2α(0°<α<45°).

1)如图1,若ABAC,求证:CD2BE

2)如图2,若ABAC,试求CDBE的数量关系(用含α的式子表示);

3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EFBC于点O,设COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点.点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm .当点Q到达顶点C时,P,Q同时停止运动.设P, Q两点运动时间为t秒.

(1)当t为何值时,PQ∥BC ?

(2)设四边形PQCB的面积为y,求y关于t的函数解析式;

(3)四边形PQCB的面积与△APQ面积比能为3:2吗?若能,求出此时t的值;若不能,请说明理由;

(4)当t为何值时,△AEQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,斜边,将绕点顺时针旋转,如图1,连接

(1)填空:  

(2)如图1,连接,作,垂足为,求的长度;

(3)如图2,点同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

查看答案和解析>>

同步练习册答案