精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求函数y=kx+b和y=的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

【答案】1y= y=2x5;(2点M的坐标为(2.5,0).

【解析】(1)利用待定系数法即可解答;

(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.

1)把点A4,3)代入函数y=得:a=3×4=12,∴y=OA==5

OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),

B0,﹣5),A43)代入y=kx+b得:解得:y=2x5

2)∵点M在一次函数y=2x5上,∴设点M的坐标为(x2x5),

MB=MC,∴

解得:x=2.5,∴点M的坐标为(2.5,0).

“点睛”本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,顶点为P.

(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;

(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;

(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与AB重合),分别过AB向直线CP作垂线,垂足分别为EFQ为斜边AB的中点.

1)如图1,当点P与点Q重合时,AEBF的位置关系是 QEQF的数量关系式

2)如图2,当点P在线段AB上不与点Q重合时,试判断QEQF的数量关系,并给予证明;

3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

1637年笛卡尔在其《几何学》中,首次应用待定系数法将四次方程分解为两个二次方程求解,并最早给出因式分解定理.

他认为:对于一个高于二次的关于x的多项式,是该多项式值为0时的一个解这个多项式一定可以分解为()与另一个整式的乘积可互相推导成立.

例如:分解因式

的一个解,可以分解为与另一个整式的乘积.

,则有

,得,从而

运用材料提供的方法,解答以下问题:

1运用上述方法分解因式时,猜想出的一个解为_______(只填写一个即可),则可以分解为_______与另一个整式的乘积;

分解因式

2)若都是多项式的因式,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把两个边长相等的等边ABCACD拼成菱形ABCD,点EF分别是射线CBDC上的动点(EFBCD不重合),且始终保持BE=CF,连结AEAFEF

1)求证:①△ABE≌△ACF②△AEF是等边三角形;

2①当点E运动到什么位置时,EFDC

②若AB=4,当∠EAB=15°时,求CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,EBC上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;

(2)连接FC,观察并猜测∠FCN的度数,并说明理由;

(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点EBC运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tanFCN的值;若∠FCN的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,最适合使用全面调查的方式收集数据的是( )

A.了解某地区人民对修建高速路的意见

B.了解同批次灯泡的使用寿命

C.了解我校七年级某班同学的课外阅读时间

D.了解昆明市中学生对社会主义核心价值观的知晓率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是___________元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__

【答案】

【解析】过点AADy轴于点D,过点BBEy轴于点E过点AAFBE轴于点F如图所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy轴,BEy轴,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBEBCE=CAD

ACDCBE中,由

ACDCBE(ASA).

设点B的坐标为(m,﹣)(m<0),则E(0,﹣),点D(0,3﹣m),点A(﹣﹣3,3﹣m),

∵点A(﹣﹣3,3﹣m)在反比例函数y=﹣上,

,解得:m=3m=2(舍去).

∴点A的坐标为(﹣1,6),B的坐标为(﹣3,2),F的坐标为(﹣1,2),

∴BF=2,AF=4,

故答案为:2

点睛

过点AADy轴于点D,过点BBEy轴于点E过点AAFBE轴于点F,根据角的计算得出ACD=CBEBCE=CAD,由此证出ACDCBE;再设点B的坐标为(m,﹣),由三角形全等找出点A的坐标,将点A的坐标代入到反比例函数解析式中求出m的值,将m的值代入AB点坐标即可得出点AB的坐标,并结合点AB的坐标求出点F的坐标,利用勾股定理即可得出结论.

型】填空
束】
18

【题目】二次函数y=x2+2m+1x+m2﹣1)有最小值﹣2,则m=________

查看答案和解析>>

同步练习册答案