精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形网格中的每个小正方形边长都为1,以每个小正方形顶点为顶点按下列要求在图①和图②中分别画三角形和平行四边形.

(1)使三角形三边长为2,3,

(2)使平行四边形有一锐角为45°,且面积为4.

【答案】(1)所求作的三角形是以为斜边的直角三角形;(2)如图②所示见解析.

【解析】

1)根据勾股定理逆定理所作三角形是以为斜边的直角三角形利用网格结构作出两直角边分别为23的直角三角形即可

2)根据网格结构45°锐角且使平行四边形的底边是2高是2即可

122+32=13=2∴所求作的三角形是以为斜边的直角三角形如图所示ABC即为所求作的三角形

2)如图所示DEFG即为所求作的平行四边形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应市委和市政府绿色环保,节能减排的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:

进价(元/只)

售价(元/只)

甲种节能灯

30

40

甲种节能灯

35

50

(1)求幸福商场甲、乙两种节能灯各购进了多少只?

(2)全部售完100只节能灯后,商场共计获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E在△ABC的外部,点DBC上,DEAC于点F,若∠1=2,AE=AC,BC=DE.

(1)求证:AB=AD;

(2)若∠1=60°,判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.

(1)求甲、乙两工程队每天能完成的绿化的面积;

(2)两队合作完成此工程,若甲队参与施工x天,试用含x的代数式表示乙队施工的天数y

(3)若甲队每天施工费用是0.6万元,乙队每天为0.2万元,且要求两队施工的天数之和不超过16天,应如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABCD相交于点OAOC≌△BOD,点EF分别在OAOB上,要使△EOC≌△FOD,添加的一个条件不可能是(  )

A. OCEODF B. CEADFB C. CEDF D. OEOF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)用公式法解方程x2﹣3x﹣7=0.
(2)解方程:4x(2x﹣1)=3(2x﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球运球是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)

根据所给信息,解答以下问题:

(1)在扇形统计图中,C对应的扇形的圆心角是_____度;

(2)补全条形统计图;

(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;

(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?

查看答案和解析>>

同步练习册答案