如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴相交于点A(-2,0),与y轴交于点C,与反比例函数
在第一象限内的图象交于点B(m,n),连结OB.若S△AOB=6,S△BOC=2.
(1)求一次函数的表达式;
(2)求反比例函数的表达式.
![]()
(1)y=2x+4;(2)
.
【解析】
试题分析:(1)由S△AOB=6,S△BOC=2得S△AOC=4,根据三角形面积公式得
•2•OC=4,解得OC=4,则C点坐标为(0,4),然后利用待定系数法求一次函数解析式;
(2)由S△BOC=2,根据三角形面积公式得到
×4×m=2,解得m=1,则B点坐标为(1,6),然后利用待定系数法确定反比例函数解析式.
试题解析:(1)∵S△AOB=6,S△BOC=2,
∴S△AOC=4,
∴
•2•OC=4,解得OC=4,
∴C点坐标为(0,4),
设一次函数解析式为y=mx+n,
把A(-2,0),C(0,4)代入得
,
解得
,
∴一次函数解析式为y=2x+4;
(2)∵S△BOC=2,
∴
×4×m=2,解得m=1,
∴B点坐标为(1,6),
把B(1,6)代入
得k=1×6=6,
∴反比例函数解析式为
.
【考点】反比例函数与一次函数的交点问题.
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江龙东卷)数学(解析版) 题型:填空题
如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=
;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+
;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+
;…,按此规律继续旋转,直至得到点P2014为止.则AP2014= .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江牡丹江卷)数学(解析版) 题型:解答题
某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.
![]()
请你根据以上信息解答下列问题:
(1)求本次调查的学生人数;
(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是 144 度;
(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江牡丹江卷)数学(解析版) 题型:选择题
如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是( )
![]()
A.30° B.45° C.60° D.75°
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江大庆卷)数学(解析版) 题型:解答题
如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江大庆卷)数学(解析版) 题型:填空题
有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,…,则第9个1在这列数中是第 个数.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(黑龙江哈尔滨卷)数学(解析版) 题型:解答题
如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;
(2)请直接写出△AEF与四边形ABCD重叠部分的面积.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(青海西宁卷)数学(解析版) 题型:选择题
如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( )
![]()
A.10.8米 B.8.9米 C.8.0米 D.5.8米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com