分析 根据黄金分割点的定义,知BC是较短线段;根据BC=$\frac{3-\sqrt{5}}{2}$AB=4,即可得出AB的长.
解答 解:∵点C恰好为线段AB的黄金分割点(AC>BC),BC=4,
∴BC=$\frac{3-\sqrt{5}}{2}$AB=4,
∴AB=2$\sqrt{5}$+6.
故答案为2$\sqrt{5}$+6.
点评 本题考查黄金分割的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值($\frac{\sqrt{5}-1}{2}$)叫做黄金比.识记黄金分割的公式:较短的线段=原线段的$\frac{3-\sqrt{5}}{2}$,较长的线段=原线段的$\frac{\sqrt{5}-1}{2}$是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com