精英家教网 > 初中数学 > 题目详情
17.计算:
(1)$\frac{{x}^{2}-xy}{{x}^{2}+2xy+{y}^{2}}$÷$\frac{x}{x+y}$
(2)$\frac{{a}^{2}}{a-b}$+$\frac{{b}^{2}}{b-a}$.

分析 根据分式的运算法则即可求出答案.

解答 解:(1)原式=$\frac{x(x-y)}{(x+y)^{2}}$×$\frac{x+y}{x}$
=$\frac{x-y}{x+y}$
(2)原式=$\frac{{a}^{2}}{a-b}$-$\frac{{b}^{2}}{a-b}$
=$\frac{{a}^{2}-{b}^{2}}{a-b}$
=a+b

点评 本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.当x满足-3<x<5时,$\frac{5-3x}{2}$的值大于-5而小于7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某数学活动小组在一次活动中,对一个数字问题作如下研究:
【问题发现】如图①,在等边三角形ABC中,点M是BC上任意一点,连接AM,以AM为边作等边△AMN,连接CN,判断CN和AB的位置关系:CN∥AB
【变式探究】如图②,在等腰三角形ABC中,BA=BC,点M是BC边上任意一点(不含端点B,C),连接AM,以AM为边作等腰三角形AMN,使顶角∠AMN=∠ABC,MA=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由.
【解决问题】如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,若正方形ADBC的边长为8,CN=$\sqrt{2}$,直接写出正方形AMEF的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.有理数a 的绝对值与它的相反数相等,那么a 是(  )
A.正数B.负数C.非负数D.非正数

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:$\frac{2m}{n}$•$\frac{{n}^{2}}{4{m}^{2}}$=$\frac{n}{2m}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知正比例函数y1=ax的图象与反比例函数y2=$\frac{k}{x}$ 的图象有一个公共点A(1,2).
(1)求这两个函数表达式;
(2)根据图象写出正比例函数值大于反比例函数值的x的取值范围;
(3)根据反比例函数的图象,写出当-2<x<-1时y2的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.对于命题“如果∠1+∠2=90°,那么∠1=∠2”,能说明它是假命题的反例是(  )
A.∠1=45°,∠2=45°B.∠1=50°,∠2=50°C.∠1=50°,∠2=40°D.∠1=40°,∠2=40°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,将边长为4的正方形ABCD沿其对角线AC剪开,固定△ADC,并把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为2时,它移动的距离AA′等于2+$\sqrt{2}$或2-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,点A的坐标为(3,0),B为直线y=$\frac{\sqrt{3}}{3}$x上的一个动点,延长AB至C,使得AB=BC,过点C作CD⊥x轴于点D,交直线OB于点F,过点A作AE∥OB,交直线CD于点E.
(1)求直线AE的解析式;
(2)在点B的运动过程中,线段CF的长是否发生改变?若不变,请求出线段CF的长;若改变,请说明理由;
(3)若AD=EF,点D在点A的右侧,直接写出tan∠CAD的值;
(4)连接BE,在点B的运动过程中,是否存在点E,使△ABE为直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案