精英家教网 > 初中数学 > 题目详情

【题目】已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.
(1)当∠BAC=∠MBN=90°时, ①如图a,当θ=45°时,∠ANC的度数为
(2)②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(3)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.

【答案】
(1)45°
(2)解:连接CN,当θ≠45°时,①中的结论不发生变化.

理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,

∴∠ABC=∠ACB=∠BNP=45°,

又∵∠BPN=∠APC,

∴△BNP∽△ACP,

=

又∵∠APB=∠CPN,

∴△ABP∽△CNP,

∴∠ANC=∠ABC=45°


(3)∠ANC=90°﹣ ∠BAC.

理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,

∴∠ABC=∠ACB=∠BNP= (180°﹣∠BAC),

又∵∠BPN=∠APC,

∴△BNP∽△ACP,

=

又∵∠APB=∠CPN,

∴△ABP∽△CNP,

∴∠ANC=∠ABC,

在△ABC中,∠ABC= (180°﹣∠BAC)=90°﹣ ∠BAC


【解析】解:(1)①∵∠BAC=90°,θ=45°, ∴AP⊥BC,BP=CP(等腰三角形三线合一),
∴AP=BP(直角三角形斜边上的中线等于斜边的一半),
又∵∠MBN=90°,BM=BN,
∴AP=PN(等腰三角形三线合一),
∴AP=PN=BP=PC,且AN⊥BC,
∴四边形ABNC是正方形,
∴∠ANC=45°;(1)①证明四边形ABNC是正方形,根据正方形的对角线平分一组对角线即可求解;②根据等腰直角三角形的性质可得∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得 = ,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,从而得解;(3)根据等腰三角形的两底角相等求出∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得 = ,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,然后根据三角形的内角和定理列式整理即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.

(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;
(2)求∠CAB的正切值;
(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题。
(1)计算:
(2)因式分解:(a+2)(a﹣2)+4(a+1)+4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.
(1)用树状图或列表法表示出所有可能的结果;
(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知购买1个足球和1个篮球共需130元,购买2个足球和3个篮球共需340元.
(1)求每个足球和每个篮球的售价;
(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AC是直径,点E是AB的中点,延长EO交⊙O于D点,若BC=DC,AB=2 ,求 的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(  )

A.12cm
B.6cm
C.3 cm
D.2 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)用配方法解一元二次方程:x2﹣6x+4=0.
(2)已知关于x的一元二次方程x2﹣4x+m=0的根的判别式的值为4,求m值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

同步练习册答案