【题目】如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:
过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,
∵△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,
∴PQ=PW,PW=PR,
∴PR=PQ,
∵点P到AC的距离为3,
∴PQ=PR=3,
则点P到AB的距离为3,
故选C.
【考点精析】通过灵活运用三角形的外角和角平分线的性质定理,掌握三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上即可以解答此题.
科目:初中数学 来源: 题型:
【题目】O为直线DA上一点,OB⊥OF,EO是∠AOB的平分线.
(1)如图(1),若∠AOB=130°,求∠EOF的度数;
(2)若∠AOB=α,90°<α<180°,求∠EOF的度数;
(3)若∠AOB=α,0°<α<90°,请在图(2)中画出射线OF,使得(2)中∠EOF的结果仍然成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).
①方程是倍根方程;
②若是倍根方程,则;
③若点在反比例函数的图像上,则关于的方程是倍根方程;
④若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s).
(1)当动点P、Q同时运动2s时,则BP=cm,BQ=cm.
(2)当动点P、Q同时运动t(s)时,分别用含有t的式子表示;BP=cm,BQ=cm.
(3)当t为何值时,△PBQ是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com