解:在△ADB和△ACD中,
∵∠A=∠A,
∠ADB=∠C,
∴△ADB∽△ACD.
∴

.
∴AD
2=AC•AB.
∵AD=2,AC=4,
∴2
2=4•AB.
解得AB=1.
所以AB的长为1.
分析:由于∠ADB=∠C,∠A=∠A,所以由三角形的判定定理可以得出△ADB∽△ACD,即:

=

,AB=

,将AD、AC的值代入求出AB的值.
点评:本题主要考查相似三角形的判定定理与性质,关键在于找出条件判定两个三角形相似,并根据相似三角形的性质求出边与边之间的比例关系,代入已知边的值求出要求的边即可.