【题目】已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.
(1)求证:MN⊥BD.
(2)若∠BAD=45°,连接MB、MD,判断△MBD的形状,并说明理由.
【答案】(1)详见解析;(2)等腰直角三角形,理由详见解析.
【解析】
(1)由直角三角形斜边中线的性质可得BM=AC,DM=AC,即可证明BM=DM,由N是BD的中点,根据等腰三角形“三线合一”的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AM=AC=BM,即可证明∠BAM=∠ABM,利用三角形外角性质可得∠MBC=2∠BAM,同理可得∠DMC=2∠DAM,利用角的和差关系可得∠BDM=90°,由BM=DM即可得出△MBD为等腰直角三角形.
(1)∵∠ABC=∠ADC=90°,M,N分别是AC、BD的中点,
∴BM=AC,DM=AC,
∴BM=DM,
∵N是BD的中点,
∴MN⊥BD.
(2)等腰直角三角形,理由:
∵M是AC的中点,∠ABC=90°,
∴AM=AC=BM,
∴∠BAM=∠ABM,
∴∠BMC=2∠BAM,
同理可得∠DMC=2∠DAM,
又∵∠BAD=45°,
∴∠BDM=∠BMC+∠DMC=2(∠BAM+∠DAM)=2∠BAD=90°,
又∵BM=DM,
∴△BDM是等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有两个点,为原点,,点所表示的数为.
⑴ ;
⑵求点所表示的数;
⑶动点分别自两点同时出发,均以每秒2个单位长度的速度沿数轴向左运动,点为线段的中点,点为线段的中点,在运动过程中,线段的长度是否为定值?若是,请求出线段的长度;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=640,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5= ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;
(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com