【题目】甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图象如图所示,结合图象解答下列问题:
(1)乙车休息了 h.
(2)求乙车与甲车相遇后y乙关于x的函数表达式,并写出自变量x的取值范围.
(3)当两车相距40km时,求x的值.
【答案】(1)0.5;(2)y乙=80x;(3)x=2或x=.
【解析】
试题分析:(1)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;
(2)根据待定系数法,可得休息后,乙车与甲车相遇后y乙关于x的函数表达式;
(3)分类讨论,0≤x<2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米即可.
试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,
可得:,
解得:.
所以函数解析式为:y=-80x+400;
把y=200代入y=-80x+400中,可得:200=-80x+400,
解得:x=2.5,
所以乙车休息的时间为:2.5-2=0.5小时;
(2)设乙车与甲车相遇后y乙关于x的函数表达式为:y乙=k1x+b1,
y乙=k1x+b1图象过点(2.5,200),(5,400),
得,
解得,
乙车与甲车相遇后y乙与x的函数解析式y乙=80x;
(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),
解得k=100,
∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,
0≤x<2.5,y甲减y乙等于40千米,
即400-80x-100x=40,解得 x=2;
2.5≤x≤5时,y乙减y甲等于40千米,
即2.5≤x≤5时,80x-(-80x+400)=40,解得x=,
综上所述:x=2或x=.
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①所有的有理数都能用数轴上的点表示;
②符号不同的两个数互为相反数;
③有理数分为正数和负数;
④两数相减,差一定小于被减数;
⑤两数相加,和一定大于任何一个加数.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为( )
A.8cm
B.10cm
C.8cm或10cm
D.8cm或9cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为( )
A. (﹣2,﹣1) B. (2,﹣1) C. (﹣2,1) D. (1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
请根据所给信息,解答下列问题:
(1)a=______,b=______;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在_____________分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1︰∠2︰∠3=28︰5︰3,则∠α度数为______________;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com