【题目】(1)(问题发现)
如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.
填空:①线段CF与DG的数量关系为 ;
②直线CF与DG所夹锐角的度数为 .
(2)(拓展探究)
如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.
(3(解决问题)
如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为 (直接写出结果).
【答案】(1)①CF=DG;②45°;(2)成立,证明详见解析;(3).
【解析】
(1)【问题发现】连接AF.易证A,F,C三点共线.易知AF=AG.AC=AD,推出CF=AC﹣AF=(AD﹣AG)=DG.
(2)【拓展探究】连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.证明△CAF∽△DAG即可解决问题.
(3)【解决问题】证明△BAD≌△CAE,推出∠ACE=∠ABC=45°,可得∠BCE=90°,推出点E的运动轨迹是在射线OCE上,当OE⊥CE时,OE的长最短.
解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;
②直线CF与DG所夹锐角的度数为45°.
理由:如图①中,连接AF.易证A,F,C三点共线.
∵AF=AG.AC=AD,
∴CF=AC﹣AF=(AD﹣AG)=DG.
故答案为CF=DG,45°.
(2)【拓展探究】结论不变.
理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.
∵∠CAD=∠FAG=45°,
∴∠CAF=∠DAG,
∵AC=AD,AF=AG,
∴,
∴△CAF∽△DAG,
∴,∠AFC=∠AGD,
∴CF=DG,∠AFO=∠OGK,
∵∠AOF=∠GOK,
∴∠K=∠FAO=45°.
(3)【解决问题】如图3中,连接EC.
∵AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,∠B=∠ACB=45°,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠ABC=45°,
∴∠BCE=90°,
∴点E的运动轨迹是在射线CE上,当OE⊥CE时,OE的长最短,易知OE的最小值为,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,是的直径,,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:①;②;③点是的中点.其中正确的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.
请补全图形并解决下面的问题:
(1)求证:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.
(1)求抛物线的解析式;
(2)P是抛物线上的动点,连接PO交直线AB于点Q,当Q是OP中点时,求点P的坐标;
(3)C在直线AB上,D在抛物线上,E在坐标平面内,以B,C,D,E为顶点的四边形为正方形,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.
(1)直接写出△ABC的面积;
(2)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;
(3)在图中画出线段EF,使它同时满足以下条件:①点E在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=.请写出点E,F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;
(2)甲、乙两人用这四个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲在O点正上方1 m的点P发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式:,已知点O与球网的水平距离为5 m,球网的高度1.55 m.
(1)当时,求h的值,并通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为的Q处时,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,是等边三角形,AP、BP的延长线分别交边CD于点E、F,联结AC、CP、AC与BF相交于点H,下列结论中错误的是( )
A.AE=2DEB.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com