【题目】如图,△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,
AD,BE相交于点P.
(1)求证:△ABE≌△CAD.
(2)求∠BPD的度数.
(3)若BQ⊥AD于Q,PQ=3,PE=1,求AD的长.
【答案】(1)证明见解析;(2)60°;(3)7.
【解析】
(1)由SAS证明△ABE≌△CAD即可;
(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出答案.
(3)由全等三角形的性质得出BE=AD,求出∠BPQ=30°,由直角三角形的性质求出BP的长,即可求得BE的长,即可解题.
(1)证明:∵△ABC为等边三角形,
∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
在△ABE和△CAD中,,
∴△ABE≌△CAD(SAS);
(2)解:由(1)得:△ABE≌△CAD,
∴∠ABE=∠CAD.
∵∠BAD+∠CAD=60°,
∴∠BAD+∠ABE=60°.
∴∠BPD=∠ABE+∠BAD=60°.
(3)解:∵△ABE≌△CAD,
∴BE=AD,
∵BQ⊥AD,
∴∠PBQ=90°﹣∠BPD=30°,
∴BP=2PQ=6,
∴AD=BE=BP+PE=6+1=7.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,经过点A(2,0)的直线与⊙O相切于点B,与y轴相交于点C.
(1)求AB的长;
(2)如果把直线AC看成一次函数y=kx+b的图象,试求k、b.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D交AC于点E,那么下列结论中正确的是 ( )
①△BDF和△CEF都是等腰三角形
②DE=BD+CE
③△ADE的周长等于AB和AC的和
④BF=CF
A. ①②③④ B. ①②③ C. ①② D. ①
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式;
(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?
(销售利润=销售价-成本价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请在下面括号里补充完整证明过程:
已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.
证明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (对顶角相等)
∴∠CFE=∠3(等量代换)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已证) ∴( )+( )=90°(等量代换)
在△AED中, ∠ADE=90°( 三角形内角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.
甲校成绩统计表
分数 | 7分 | 8分 | 9分 | 10分 |
人数 | 11 | 0 | 8 |
(1)在图①中,“7分”所在扇形的圆心角等于______;
(2)请你将②的统计图补充完整;
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:函数y=ax2-(3a+1)x+2a+1(a为常数).
(1)若该函数图象与坐标轴只有两个交点,求a的值;
(2)若该函数图象是开口向上的抛物线,与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x2-x1=2.
①求抛物线的表达式;
②作点A关于y轴的对称点D,连接BC,DC,求sin ∠DCB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com