精英家教网 > 初中数学 > 题目详情

【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:由题意得:A(4,0),C(0,4),对称轴为x=1.

设抛物线的解析式为y=ax2+bx+c,则有:

解得

∴抛物线的函数解析式为:y=﹣ x2+x+4


(2)

解:①当m=0时,直线l:y=x.

∵抛物线对称轴为x=1,

∴CP=1.

如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.

∴CM=CP=1,

∴OM=OC+CM=5.

SOPH=SOMH﹣SOMP= OM)2 OMCP= ×( ×5)2 ×5×1= =

∴SOPH=

②当m=﹣3时,直线l:y=x﹣3.

设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).

假设存在满足条件的点P.

(i)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.

设PE=a(0<a≤4),

则PD=3+a,PF= PD= (3+a).

过点F作FN⊥y轴于点N,则FN=PN= PF,∴EN=|PN﹣PE|=| PF﹣PE|.

在Rt△EFN中,由勾股定理得:EF= =

若PE=PF,则:a= (3+a),解得a=3( +1)>4,故此种情形不存在;

若PF=EF,则:PF= ,整理得PE= PF,即a=3+a,不成立,故此种情形不存在;

若PE=EF,则:PE= ,整理得PF= PE,即 (3+a)= a,解得a=3.

∴P1(0,3).

(ii)当点P在BC边上时,如答图2﹣2所示,此时PE=4.

若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,

∵∠OGD=135°,

∴∠EPF=45°,即△PHF为等腰直角三角形,

设GE=GF=t,则GK=FK=EH= t,

∴PH=HF=EK=EG+GK=t+ t,

∴PE=PH+EH=t+ t+ t=4,

解得t=4 ﹣4,

则OE=3﹣t=7﹣4

∴P2(7﹣4 ,4)

(iii)∵A(4,0),B(2,4),

∴可求得直线AB解析式为:y=﹣2x+8;

联立y=﹣2x+8与y=x﹣3,解得x= ,y=

设直线BA与直线l交于点K,则K( ).

当点P在线段BK上时,如答图2﹣3所示.

设P(a,8﹣2a)(2≤a≤ ),则Q(a,a﹣3),

∴PE=8﹣2a,PQ=11﹣3a,

∴PF= (11﹣3a).

与(i)同理,可求得:EF=

若PE=PF,则8﹣2a= (11﹣3a),解得a=1﹣2 <0,故此种情形不存在;

若PF=EF,则PF= ,整理得PE= PF,即8﹣2a= (11﹣3a),解得a=3,符合条件,此时P3(3,2);

若PE=EF,则PE= ,整理得PF= PE,即 (11﹣3a)= (8﹣2a),解得a=5> ,故此种情形不存在.

(iv)当点P在线段KA上时,如答图2﹣4所示.

∵PE、PF夹角为135°,

∴只可能是PE=PF成立.

∴点P在∠KGA的平分线上.

设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD= MN,

由OD=OM+MD=3,可求得M(0,3﹣3 ).

又因为G(3,0),

可求得直线MG的解析式为:y=( ﹣1)x+3﹣3

联立直线MG:y=( ﹣1)x+3﹣3 与直线AB:y=﹣2x+8,

可求得:P4(1+2 ,6﹣4 ).

(v)当点P在OA边上时,此时PE=0,等腰三角形不存在.

综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4 ,4)、(1+2 ,6﹣4 ).


【解析】(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式SOPH=SOMH﹣SOMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PB切⊙O于点B,联结PO并延长交⊙O于点E,过点B作BA⊥PE交⊙O于点A,联结AP,AE.

(1)求证:PA是⊙O的切线;
(2)如果OD=3,tan∠AEP= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2mxm-2=0.

(1)求证:无论m取何值,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1x2,当m=3时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EAD的中点,延长CB到点F,使,连接BE、AF.

(1)完成画图并证明四边形AFBE是平行四边形;

(2)若AB=6,AD=8,∠C=60°,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果SBAF=4SDFO , 求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.

(1)求A,B两点的坐标;

(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:

①若△PBO的面积为S,求S关于a的函数解析式;

②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等腰直角三角形,延长BCE使BE=BA,过点BBDAE于点DBDAC交于点F,连接EF

1)求证:BF=2AD

2)若CE=,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求完成下列题目:

(1)图中有   块小正方体;

(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.

(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要    个小立方块,最多要    个小立方块.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有_______________(请填写所有正确结论的序号)

①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若,则 ③已知反比例函数,若,则④分式是最简分式 ; ⑤ 是同类二次根式;

查看答案和解析>>

同步练习册答案