精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点B、C、D在同一条直线上,△ABC△CDE都是等边三角形.BEACF,ADCEH,

求证:△BCE≌△ACD;

求证:CF=CH;

判断△CFH的形状并说明理由

【答案】证明见解析②证明△BCF≌△ACH;③△CFH是等边三角形

【解析】试题分析:①利用等边三角形的性质得出条件,可证明:△BCE≌△ACD
②利用△BCE≌△ACD得出∠CBF=CAH,再运用平角定义得出∠BCF=ACH进而得出△BCF≌△ACH因此CF=CH
③由CF=CH和∠ACH=60°根据有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.

试题解析:①证明:∵∠BCA=DCE=60°
∴∠BCE=ACD
BC=ACCE=CD
∴△BCE≌△ACD

②∵△BCE≌△ACD
∴∠CBF=CAH
∵∠ACB=DCE=60°
∴∠ACH=60°
∴∠BCF=ACH
BC=AC
∴△BCF≌△ACH
CF=CH

③∵CF=CH,∠ACH=60°
∴△CFH是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,取点D与点E,使得AD=AE,BAE=CAD,连结BD与CE交于点O.求证:

(1)ABD≌△ACE

(2)OB=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC、AB、AC边上的动点,则△PQR周长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCACBC10 cmAB12 cmDAB的中点连结CD动点P从点A出发沿ACB的路径运动到达点B时运动停止速度为每秒2 cm设运动时间为

1CD的长

2为何值时ADP是直角三角形

3直接写出为何值时ADP是等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC逆时针旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角∠A CA′的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格中每个小正方形的顶点叫格点,△OAB的顶点的坐标分别为O(0,0)、A(1,3)、B(5,0).
(1)请画出与△OAB关于原点对称的△OCD;(其中A的对称点为C,B的对称点为D)
(2)在(1)的条件下,连接BC、DA,请画出一条直线MN(不与直线AC和坐标轴重合),将四边形ABCD的面积分成相等的两部分,其中M、N分别在AD和BC上,且M、N均为格点,并直接写出直线MN的解析式(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数xy在数轴上对应点如图所示:

1)在数轴上表示﹣x|y|

2)试把xy0,﹣x|y|这五个数从小到大用“<”号连接,

3)化简:|x+y||yx|+|y|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的长.

查看答案和解析>>

同步练习册答案