精英家教网 > 初中数学 > 题目详情

【题目】如图,已知内角平分线的交点,则的面积比是(

A.B.C.D.

【答案】C

【解析】

首先过点O,作ODABD,作OEACE,作OFBCF,由点OABC内角平分线的交点,根据角平分线的性质,即可得OD=OE=OF,继而可得SABOSBCOSCAO=ABBCCA,则可求得答案.

过点O,作ODABD,作OEACE,作OFBCF


∵点OABC内角平分线的交点,
OD=OE=OF
SABO=ABODSCAO=ACOESBCO=BCOF
AB=10BC=15CA=20
SABOSBCOSCAO=ABBCCA=101520=234
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N

1)求证:△ABM∽△EFA

2)若AB=12BM=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC的平分线BE与∠ACB外角的平分线CE交于点E

1)如图1,若∠BAC40°,则∠BEC   °

2)如图2,将∠BAC变为60°,则∠BEC   °,写出∠BAC与∠BEC的关系;并说明你的理由

3)在图1的基础上过点E分别作ENBANEQACQEMBDM,如图3

求证:△ANEAQE,并求出∠NAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形网格中,每个小格的顶点叫做格点.当所作正方形边上的点刚好在格点上的点称为整点.如图中四条边上的整点共有个;四条边上的整点共有个.请你观察图中正方形四条边上的整点的个数按此规律,推算出正方形四条边上的整点共有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.

(1)求抛物线对应的二次函数的表达式;

(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;

(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.

完成下列步骤,画出函数的图象;

列表、填空;

x

0

1

2

3

y

3

______

1

______

1

2

3

描点:

连线

观察图象,当x______时,yx的增大而增大;

结合图象,不等式的解集为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当x是多少米时,设计费最多?最多是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点…..那么点的坐标为________

查看答案和解析>>

同步练习册答案