【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形;
然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断,从而找出正确的个数即可得到答案.
∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是菱形,正确;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
如下图所示:
∴EN=BC,GN=AD,
∴EG= (BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;
故①②③对.
故选C.
科目:初中数学 来源: 题型:
【题目】为了减轻学生课业负担,提高课堂效果,我县教体局积极推进 “高效课堂”建设.
某学校的《课堂检测》印刷任务原来由甲复印店承接,其每月收费y(元)与复印页数x(页)的函数关系如图所示:
⑴从图象中可看出:每月复印超过500页部分每页收费 元;
⑵现在乙复印店表示:若学校先按每月付给200元的月承包费,则可按每页0.15元收费.乙复印店每月收费y(元)与复印页数x(页)的函数关系为 ;
⑶在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答每月复印在3000页左右应选择哪个复印店?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于函数 的四个命题:①当 时, 有最小值10;② 为任意实数, 时的函数值大于 时的函数值;③若 ,且 是整数,当 时, 的整数值有 个;④若函数图象过点 和 ,其中 , ,则 .其中真命题的序号是( )
A.①
B.②
C.③
D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 ( )与反比例函数 ( )的图象交于点 , .
(1)求这两个函数的表达式;
(2)在 轴上是否存在点 ,使 为等腰三角形?若存在,求 的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某日的钱塘江观潮信息如表:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 (千米)与时间 (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点 ,点 坐标为 ,曲线 可用二次函数 ( , 是常数)刻画.
(1)求 的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以 千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为 千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度 , 是加速前的速度).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题:
(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;
(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;
(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有__________对,邻补角有__________对.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知在△ABC中,∠C=90°,AC=5,AB=13.点D在边AC上,且点D到边AB和边BC的距离相等.
(1)用直尺圆规作出点D(不写作法,保留作图痕迹,在图上标注清楚点D);
(2)求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图以正方形ABCD的B点为坐标原点.BC所在直线为x轴,BA所在直线为y轴,建立直角坐标系.设正方形ABCD的边长为6,顺次连接OA、OB、OC、OD的中点A1、B1、C1、D1,得到正方形A1B1C1D1,再顺次连接OA1、OB1、OC1、OD1的中点得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n为不小于1的自然数),设An点的坐标为(xn,yn),则xn+yn=______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com