【题目】如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之间的距离.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;
(2)先求出BD的长,求出菱形的面积,即可求出答案.
试题解析:(1)∵AE∥BF,
∴∠ADB=∠DBC,∠DAC=∠BCA,
∵AC、BD分别是∠BAD、∠ABC的平分线,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∴∠BAC=∠ACB,∠ABD=∠ADB,
∴AB=BC,AB=AD
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD是菱形;
(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=OC=AC=×6=3,
∵AB=5,
∴在Rt△AOB中,由勾股定理得:BO=4,
∴BD=2BO=8,
∴菱形ABCD的面积为×AC×BD=×6×8=24,
∵四边形ABCD是菱形,
∴BC=AB=5,
∴5×AM=24,
∴AM=,
即AE,BF之间的距离是.
科目:初中数学 来源: 题型:
【题目】在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.
(1)如图1,当P在线段AC上时,请说明:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,⑴中的结论是否成立? (填“成立”或“不成立”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.
(1)求当x=5时,对应y的值;
(2)如图2、3、4,求出当点P分别在边AB、BC和CE上时,y与x之间的关系式;
(3)如备用图,当P在线段BC上运动时,是否存在点P使得△APE的周长最小,若存在,求出此时∠PAD的度数,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这四张牌背面朝上洗匀后随机摸出一张,再从剩下的牌中随机的摸出另一张.
(1)请用树状图(或列表法)表示两次摸牌所有可能的结果;
(2)求摸出两张牌的牌面图形都是中心对称图形的纸牌的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.
(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S2=.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com