精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,AD>AB.

(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.

解:(1)如图所示:

(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可。

解析分析:(1)根据角平分线的作法作出∠ABC的平分线即可。
(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可。
解:(1)如图所示:

(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF。
∵∠EBF=∠AEB,∴∠ABE=∠AEB。∴AB=AE。
∵AO⊥BE,∴BO=EO。
∵在△ABO和△FBO中,∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
∴△ABO≌△FBO(ASA)。∴AO=FO。
∵AF⊥BE,BO=EO,AO=FO。∴四边形ABFE为菱形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(提示:过点P作PE∥l1
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

求证:两条直线被第三条直线所截,如果同旁内角的角平分线互相垂直, 那么这两条直线互相平行.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.

(1)证明△AMF是等腰三角形;
(2)当EG过点D时(如图(3)),求x的值;
(3)将y表示成x的函数,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知∠1=∠2,∠3=∠4,∠5=∠C,求证:DE//BF

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE。求证:BC=AE。

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有( )

A.8对;B.6对;C.4对;D.2对.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图所示的两个三角形是位似图形,它们的位似中心是

A.点O B.点P C.点M D.点N

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

以下是甲、乙、丙三人看地图时对四个坐标的描述:
甲:从学校向北直走500米,再向东直走100米可到图书馆.
乙:从学校向西直走300米,再向北直走200米可到邮局.
丙:邮局在火车站西200米处.
根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站(   )

A.向南直走300米,再向西直走200米
B.向南直走300米,再向西直走100米
C.向南直走700米,再向西直走200米
D.向南直走700米,再向西直走600米

查看答案和解析>>

同步练习册答案