精英家教网 > 初中数学 > 题目详情

【题目】如图①,矩形ABCD的对角线ACBD交于点O,过点DDPOC,且DPOC,连接CP.

(1)判断四边形CODP的形状并说明理由;

(2)如图②,如果题目中的矩形变为菱形,判断四边形CODP的形状并说明理由;

(3)如图③,如果题目中的矩形变为正方形,判断四边形CODP的形状并说明理由.

【答案】(1)四边形CODP是菱形,理由见解析; (2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析.

【解析】试题分析:(1)根据矩形的性质得出OD=OC,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据菱形的判定推出即可;
(2)根据菱形的性质得出∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据矩形的判定推出即可;
(3)根据正方形的性质得出OD=OC,∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据正方形的判定推出即可;

试题解析:

(1)四边形CODP的形状是菱形,理由是:

∵四边形ABCD是矩形,

AC=BDOA=OC=ACOB=OD=BD

∴OC=OD,

∵DP∥OC,DP=OC,

∴四边形CODP是平行四边形,

∵OC=OD,

∴平行四边形CODP是菱形;

(2)四边形CODP的形状是矩形,

理由是:∵四边形ABCD是菱形,

∴AC⊥BD,

∴∠DOC=90°,

∵DP∥OC,DP=OC,

∴四边形CODP是平行四边形,

∵∠DOC=90°,

∴平行四边形CODP是矩形;

(3)四边形CODP的形状是正方形,

理由是:∵四边形ABCD是正方形,

ACBDAC=BDOA=OC=ACOB=OD=BD

∴∠DOC=90°,OD=OC,

∵DP∥OC,DP=OC,

∴四边形CODP是平行四边形,

∵∠DOC=90°,OD=OC

∴平行四边形CODP是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.

(1)已知g(x)=-2x2-3x+1,分别求出g(-1)g(-2);

(2)已知h(x)=ax3+2x2-ax-6,h()=a,a的值;

(3)已知f(x)=-2(a,b为常数),k无论为何值总有f(1)=0,a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a0),点C的坐标为(0b),且ab满足|b6|0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动.

1a______________b_____________,点B的坐标为_______________

2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;

3)在移动过程中,当点Px轴的距离为5个单位长度时,求点P移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDEF1=75,2=45,点 G为∠BED 内一点,且 EG把∠BED分成 1 2 两部分,则∠GEF 的度数为 ___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空完成推理过程:

如图,ADBC于点DEGBC于点GAD平分∠BA C. 求证: E=1.

证明: ADBC于点DEGBC于点G,(已知)

∴∠ADC=EGC=90°,(垂直的定义)

ADEG,(    )

∴∠1=     ,(      )

E=3,(两直线平行,同位角相等)

AD平分∠BAC,(已知)

∴∠2=3,(     )

∴∠E=1.(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AB上的一点,OC为任一射线,OD平分∠BOC,OE平分∠AOC.

(1)指出图中∠AOD的补角和∠BOE的补角;

(2)若∠BOC=68°,求∠COD和∠EOC的度数;

(3)COD与∠EOC具有怎样的数量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式计算正确的是( )

A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3

C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 , 点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.

查看答案和解析>>

同步练习册答案