精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

【答案】
(1)解:∵抛物线y=(x+2)2+m经过点A(﹣1,0),

∴0=1+m,

∴m=﹣1,

∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,

∴点C坐标(0,3),

∵对称轴x=﹣2,B、C关于对称轴对称,

∴点B坐标(﹣4,3),

∵y=kx+b经过点A、B,

,解得

∴一次函数解析式为y=﹣x﹣1


(2)解:由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.


【解析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出一次函数解析式.(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a=0.32b=32c=d=,则它们的大小关系是(  )

A. abcd B. badc C. adcb D. cadb

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点AB分别是∠NOPMOP平分线上的点,ABOP于点EBCMN于点CADMN于点D,下列结论错误的是(  )

A. ADBCAB B. 与∠CBO互余的角有两个

C. AOB=90° D. OCD的中点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD边长为2,E为CD的中点,以点A为中心,把△ADE顺时针旋转90°得△ABF,连接EF,则EF的长等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、2、3、4的外角的角度和为220°,则∠BOD的度数是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中MBC的中点且MN与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案