精英家教网 > 初中数学 > 题目详情
(2012•宜宾)如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;
(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.
(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.
(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD
.
PB、②AB
.
PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.
解答:解:(1)∵顶点A的横坐标为x=-
-2
2
=1,且顶点A在y=x-5上,
∴当x=1时,y=1-5=-4,
∴A(1,-4).

(2)△ABD是直角三角形.
将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3,
∴y=x2-2x-3,∴B(0,-3)
当y=0时,x2-2x-3=0,x1=-1,x2=3
∴C(-1,0),D(3,0),
BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,
BD2+AB2=AD2
∴∠ABD=90°,即△ABD是直角三角形.

(3)存在.
由题意知:直线y=x-5交y轴于点E(0,-5),交x轴于点F(5,0)
∴OE=OF=5,
又∵OB=OD=3
∴△OEF与△OBD都是等腰直角三角形
∴BD∥l,即PA∥BD
则构成平行四边形只能是PADB或PABD,如图,
过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.
设P(x1,x1-5),则G(1,x1-5)
则PG=|1-x1|,AG=|5-x1-4|=|1-x1|
PA=BD=3
2

由勾股定理得:
(1-x12+(1-x12=18,x12-2x1-8=0,x1=-2或4
∴P(-2,-7)或P(4,-1),
存在点P(-2,-7)或P(4,-1)使以点A、B、D、P为顶点的四边形是平行四边形.
点评:题目考查了二次函数解析式的确定、勾股定理、平行四边形的判定等基础知识,综合性较强;(3)题应注意分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).
(1)求经过点C的反比例函数的解析式;
(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=
121°
121°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为
(-1,-1)
(-1,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=
2
-1
2
-1

查看答案和解析>>

同步练习册答案