精英家教网 > 初中数学 > 题目详情
15.如图,在边长为1个单位长度的小正方形网格中,
(1)画出△ABC关于直线x=1的对称△A1B1C1
(2)画出△ABC关于C点顺时针旋转90°的△A2B2C2
(3)设P、Q两点分别是△ABC和△A1B1C1两对应点,已知P点坐标为(m,n),写出点Q的坐标.

分析 (1)分别作出点A、C关于x=1的对称点,顺次连接即可得;
(2)分别作出点A、B关于C点顺时针旋转90°所得对应点,再顺次连接即可得;
(3)根据轴对称的性质求解可得.

解答 解:(1)如图,△A1B1C1即为所求;


(2)如图,△A2B2C2即为所求;

(3)∵P、Q两点分别是△ABC和△A1B1C1两对应点,且△ABC与△A1B1C1关于直线x=1的对称,
∴P、Q两点的纵坐标相等,点Q的横坐标满足$\frac{x+m}{2}$=1,即x=2-m,
∴点Q的坐标为(2-m,n).

点评 本题主要考查作图-轴对称变换、旋转变换,熟练掌握轴对称变换、旋转变换的定义和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【知识链接】
(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.
例如:$\sqrt{2}$的有理化因式是$\sqrt{2}$;1-$\sqrt{{x}^{2}+2}$的有理化因式是1+$\sqrt{{x}^{2}+2}$.
(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1,$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$.
【知识理解】
(1)填空:2$\sqrt{x}$的有理化因式是$\sqrt{x}$;
(2)直接写出下列各式分母有理化的结果:
①$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\sqrt{7}$-$\sqrt{6}$;②$\frac{1}{3\sqrt{2}+\sqrt{17}}$=3$\sqrt{2}$-$\sqrt{17}$.
【启发运用】
(3)计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程(组)
(1)2x-8(1-x)=5(x-2)
(2)x-$\frac{x+5}{6}$=1-$\frac{x+2}{3}$
(2)$\left\{\begin{array}{l}{a=6-2b}\\{a-3b=-4}\end{array}\right.$
(4)$\left\{\begin{array}{l}{2x+3y=-6}\\{7x+6y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.林甸某中学开展了一项为贫困学生助学活动,号召学生自愿捐款.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款额恰好相等,求两个年级捐款总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,△ECD是△ABC经过平移得到的,∠A=70°,∠B=40°,求∠ACE和∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在网格图中,每格是边长为1的正方形,四边形ABCD的顶点均为格点.
(1)以O为位似中心,在网格图中作四边形A′B′C′D′,使四边形A′B′C′D′于四边形ABCD位似,且$\frac{OC′}{OC}$=2.
(2)求$\frac{{S}_{△A′B′O}}{{S}_{△A′C′O}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在等边△ABC中,AB=4,点E在BC边上,将射线AE绕点A逆时针旋转60°,与△ABC的外角∠ACD的平分线交于点F,连接AF.设BE=x,△AEF的面积为y,则y与x之间的函数关系式为y=$\frac{\sqrt{3}}{4}$x2-$\sqrt{3}$x+4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.一元二次方程x2-x-1=0和2x2-6x+5=0,这两个方程的所有实数根之和为(  )
A.4B.-4C.-6D.1

查看答案和解析>>

同步练习册答案