精英家教网 > 初中数学 > 题目详情
精英家教网如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC与AB相交于E.AB=5cm、AC=2cm,则△ADE的周长=
 
cm.
分析:先根据已知条件判定△ABC是等腰三角形,根据等腰三角形的性质可得D是AC中点,即AD=
1
2
AC;
然后根据DE∥BC,且DB平分∠ABC,证得△BED是等腰三角形,得BE=DE;则△ADE的周长=AB+
1
2
AC.
解答:解:∵DB平分∠ABC,
∴∠ABD=∠CBD;
∵BD⊥AC,即∠ADB=∠CDB=90°,
∴∠A=∠C,即△ABC是等腰三角形;
∴D是AC的中点,即AD=
1
2
AC=1cm;
∵DE∥BC,
∴∠EDB=∠CBD;
又∵∠ABD=∠CBD,
∴∠EBD=∠EDB,即BE=DE;
∴△ADE的周长=AD+DE+AE=AD+AE+BE=AD+AB=1+5=6cm.
故△ADE的周长为6cm.
点评:解答本题的关键,是根据已知条件证得△ABC、△BED是等腰三角形,然后根据等腰三角形的性质,将△ABC的周长转换为AB、AC的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案