【题目】如图所示,将一副三角板摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值为_____.
【答案】
【解析】
如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.
解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,
∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°
∴∠DCE=45°,
∵DE⊥CE
∴∠CEB=90°,∠CDE=45°
∴设DE=CE=x,则CD=x,
在Rt△ACD中,
∵∠CAD=30°,
∴tan∠CAD==,
则AC=,
在Rt△ABC中,∠BAC=∠BCA=45°
∴BC=x,
∴在Rt△BED中,tan∠CBD===
故答案为:.
科目:初中数学 来源: 题型:
【题目】为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则
(x2﹣1)=y2,原方程化为y2﹣5y+4=0.①
解得y1=1,y2=4
当y=1时,x2﹣1=1.∴x2=2.∴x=±;
当y=4时,x2﹣1=4,∴x2=5,∴x=±.
∴原方程的解为x1=,x2=﹣,x3=,x4=﹣
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想.
(2)解方程:x4﹣x2﹣6=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司对自家办公大楼一块米的正方形墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修;中心区是正方形,用材料乙装修). 两种材料的成本如下表:
材料 | 甲 | 乙 |
价格(元/米2) | 550 | 500 |
设矩形的较短边的长为米,装修材料的总费用为元.
(1)计算中心区的边的长(用含的代数式表示);
(2)求关于的函数解析式;
(3)当中心区的边长不小于2米时,预备材料的购买资金32000元够用吗?请利用函数的增减性来说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
(1)求证:EF为半圆O的切线;
(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN是垂直于水平面的一棵树,小马(身高1.70米)从点A出发,先沿水平方向向左走2米到达P点处,在P处测得大树的顶端M的仰角为37°,再沿水平方向向左走8米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),则大树MN的高度约为( )(参考数据:tan37°≈0.75,sin37°≈0.60)
A.7.8米B.9.7米C.12米D.13.7米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】万州苏宁电器某品牌洗衣机销售情况良好,2018年11月份初该洗衣机每台的进价为2280元,购进了600台该品牌洗衣机.
(1)如果该商场为了减小库存压力,想把购进的600台该品牌洗衣机在11月底全部销售完,商场决定利用打折来促销,每台洗衣机在标价的基础上打8折,这样很快销售一空.要使该商场获得利润不低于72000元,则每台洗衣机的标价应不低于多少元?
(2)该商场决定12月初继续购进600台该品牌洗衣机销售,据悉,2018年12月份因全国经济出现通货膨胀,商品价格进一步上涨,商场决定该品牌洗衣机的销售价格比(1)中的最低标价上涨m%,但实际销售量比11月份下降了m%,如果11月份就按(1)中的最低标价进行销售,且也全部销售完,这样万州苏宁电器12月份的销售额与11月份的销售额持平,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,已知∠BAC=90°,AB=6,AC=8,点D是AC上的一点,将△ABC沿着过点D的一条直线翻折,使点C落在BC边上的点E处,连接AE、DE,当∠CDE=∠AEB时,AE的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分别与AC,CD相交于点E,F.
(1)求证:△AEB~△CFB;
(2)若AE=2EC,BC=6.求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com