精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

(1)求证:EF为半圆O的切线;

(2)若DADF=6,求阴影区域的面积.(结果保留根号和π)

【答案】(1)证明见解析 (2)﹣6π

【解析】

1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;

2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案.

1)证明:连接OD

D为弧BC的中点,

∴∠CADBAD

OAOD

∴∠BADADO

∴∠CADADO

DEAC

∴∠E90°

∴∠CAD+∠EDA90°,即ADO+∠EDA90°

ODEF

EF为半圆O的切线;

2)解:连接OCCD

DADF

∴∠BADF

∴∠BADFCAD

∵∠BAD+∠CAD+∠F90°

∴∠F30°BAC60°

OCOA

∴△AOC为等边三角形,

∴∠AOC60°COB120°

ODEFF30°

∴∠DOF60°

Rt△ODF中,DF6

ODDFtan30°6

Rt△AED中,DA6CAD30°

DEDAsin30°3EADAcos30°9

∵∠COD180°AOCDOF60°

CODO

∴△COD是等边三角形,

∴∠OCD60°

∴∠DCOAOC60°

CDAB

SACDSCOD

S阴影SAEDS扇形COD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知AB=AC=5BC=6,且△ABC≌△DEF,将△DEF△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿BC的方向运动,且DE始终经过点AEFAC交于M点.

1)求证:△ABE∽△ECM

2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;

3)求当线段AM最短时的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一扇门ABCD,宽度AB1mA到墙角E的距离AE0.5m,设EAB在一条直线上,门打开后被与门所在墙面垂直的墙阻挡(EAEB′),边BC靠在墙B'C'的位置.

1)求∠BAB'的度数;

2)打开门后,门角上的点B在地面扫过的痕迹为弧BB',设弧BB'与两墙角线围成区域(如图2)的面积为Sm2),求S的值(π≈3.14≈1.73,精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,对角线ACBD交于点OE是边AD上的一个动点(与点AD不重合),连接EO并延长,交BC于点F,连接BEDF.下列说法:

对于任意的点E,四边形BEDF都是平行四边形;

当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;

AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;

当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.

所有正确说法的序号是:_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形台球桌面ABCD上有两个球PQPQAB,球P连续撞击台球桌边ABBC反射后,撞到球Q.已知点MN是球在ABBC边的撞击点,PQ=4,∠MPQ=30,且点PAB边的距离为3,则四边形PMNQ的周长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点Cy轴正半轴上的一个动点,抛物线yax26ax+5aa是常数,且a0)过点C,与x轴交于点AB,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有个小球,它们除了颜色不同外,其余都相同, 其中有 5 个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.下表是摸球试验的一组统计数据:

摸球次数( n

50

100

150

200

250

300

500

摸到白球次( m

28

60

78

104

123

152

251

白球频率(

0.56

0.60

0.52

0.52

0.49

0.51

0.50

由上表可以推算出a大约是(

A.10B.14C.16D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育活动的时间是多少,共有4个选项:A1.5小时以上;B11.5小时;C0.51小时;D0.5小时以下.图12是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

1)本次一共调查了多少名学生?

2)在图1中将选项B的部分补充完整;

3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.

查看答案和解析>>

同步练习册答案