精英家教网 > 初中数学 > 题目详情

【题目】如图1,矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,已知折痕与边BC交于点O,连结AP、OP、OA.

(1)求证:OCP∽△PDA;

(2)若OCPPDA的面积比为1:4,求边AB的长;

(3)如图2,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MNPB于点F,作MEBP于点E.探究:当点M、N在移动过程中,线段EF与线段PB有何数量关系?并说明理由.

【答案】1)见解析;(2)10;(3PB=2EF.

【解析】

(1)根据折叠的性质可知得到∠APO=B=90°,根据相似三角形的判定定理证明即可;

(2)根据勾股定理计算即可;

(3)作MHABPBH,根据相似三角形的性质得到BF=FH,根据等腰三角形的性质得到PE=EH,得到答案.

(1)证明:由折叠的性质可知,∠APO=B=90°,

∴∠APD+CPO=90°,又∠APD+DAP=90°,

∴∠DAP=CPO,又∠D=C=90°,

∴△OCP∽△PDA;

(2)∵△OCP∽△PDA,面积比为1:4,

CP=4,

AB=x,则AP=x,PD=x-4,

由勾股定理得,AD2+PD2=AP2,即82+(x-4)2=x2

解得,x=10,即AB=10;

(3)PB=2EF.

MHABPBH,

∴∠PHM=PBA,

AP=AB,

∴∠APB=PBA,

∴∠APB=PHM,

MP=MH,又BN=PM,

MH=BN,又∵MHAB,

BF=FH,

MP=MH,MEBP,

PE=EH,

PB=2EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;、3a+c>0;③当x>0时,yx的增大而减小;④当y>0时,x的取值范围是﹣1<x<3;⑤方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).

(1)求这个二次函数的表达式;

(2)若P是第四象限内这个二次函数的图象上任意一点,PHx轴于点H,与BC交于点M,连接PC.

①求线段PM的最大值;

②当PCM是以PM为一腰的等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.

(1)求证:四边形AECF是菱形;

(2)当∠BAC的度数为多少时,四边形AECF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=-3x+3x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形 ABCD 的对称中心在坐标原点,ABx 轴,AD、BC 分别与 x 轴交于 E、F,连接 BE、DF,若正方形 ABCD 的顶点 B,D在双曲线 y 上,实数 a 满足 a1-a 1,则四边形 DEBF 的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如图1,过点PPEy轴于点E.求PAE面积S的最大值;

(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)证明原方程有两个不相等的实数根;

(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于抛物线,下列说法错误的是(

A. 开口向上 B. 时,经过坐标原点O

C. 抛物线与x轴无公共点 D. 不论为何值,都过定点

查看答案和解析>>

同步练习册答案