精英家教网 > 初中数学 > 题目详情
11.已知m,n是方程x2+2x-6=0的一个根,则代数式m2-mn+3m+n的值为10.

分析 根据方程的解的定义及韦达定理得出m2+2m=6,m+n=-2,mn=-6,代入到原式=m2+2m-mn+m+n可得答案.

解答 解:∵m,n是方程x2+2x-6=0的根,
∴m2+2m=6,m+n=-2,mn=-6,
则原式=m2+2m-mn+m+n=6-(-6)-2=10,
故答案为:10.

点评 本题主要考查一元二次方程的解及根与系数的关系,熟练掌握方程的解的定义及韦达定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,某轮船以20海里/小时的速度自西向东航行,在A处测得有一小岛P在北偏东60°的方向上;航行了2小时到达B处,这时测得该小岛P在北偏东30°的方向上,求∠APB的度数及轮船在B处时与小岛P的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.960万用科学记数法应写成9.6×106

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解下列方程组
(1)$\left\{\begin{array}{l}x+y=3\\ x-y=2\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+2y=3}\\{5x-6y=-23}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在△ABC中,∠BAC=3∠B,∠ABC-∠C=30°,则∠BAC=126°,∠B=42°,∠C=12°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0)和B(3,0).下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=2(a≠0)没有实数根.其中正确的结论有(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=8,AO=3,AB=5,则CD的长为(  )
A.3B.8C.5D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:|-$\sqrt{3}$|=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知二次函数y=a(x-h)2+k当x=-1时,有最小值-4,且当x=0时,y=-3,求二次函数的解析式.

查看答案和解析>>

同步练习册答案