精英家教网 > 初中数学 > 题目详情

【题目】某课外学习小组有5人,在一次数学测验中的成绩分别是120、130、135、120、125,下列说法不正确的是(  )
A.众数是120
B.方差是34
C.中位数是135
D.平均数是126

【答案】C
【解析】解:120出现了2次,最多,故众数为120,A正确;
平均数为:(120+130+135+120+125)=126,D正确;
方差为:×[2×(120﹣126)2+(130﹣126)2+(135﹣126)2+(125﹣126)2]=34,B正确;
中位数为125,C错误.
由于该题选择不正确的,故选C.
【考点精析】利用算术平均数和中位数、众数对题目进行判断即可得到答案,需要熟知总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数;中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值2x23x+74x2+3x+1,其中x=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是( )
A.0.36×107
B.3.6×106
C.3.6×107
D.36×105

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C∠AED的大小关系吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°AB=AC,点EAC上(且不与点AC重合),在△ABC的外部作△CED,使∠CED=90°DE=CE,连接AD,分别以ABAD为邻边作平行四边形ABFD,连接AF

1)请直接写出线段AFAE的数量关系

2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AFAE的数量关系,并证明你的结论;

3)在图的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图写出证明过程;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了安全,请勿超速.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,CBN=60°,BC=200米,此车超速了吗?请说明理由.

(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果|m3|+(n+2)20,那么mn的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:x2+4x﹣5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为(  )
A.2
B.-2
C.±2
D.±

查看答案和解析>>

同步练习册答案