【题目】已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为( )
A.2
B.-2
C.±2
D.±
科目:初中数学 来源: 题型:
【题目】某课外学习小组有5人,在一次数学测验中的成绩分别是120、130、135、120、125,下列说法不正确的是( )
A.众数是120
B.方差是34
C.中位数是135
D.平均数是126
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市开展的“‘新华杯’中学双语课外阅读”活动中,某中学为了解八年级400名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 2 | 10 | 15 | 17 | 6 |
(1)求这50个样本数据的众数和中位数;
(2)根据样本数据,估计该校八年级400名学生在本次活动中读书多于2册的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“做文明郴州人”演讲比赛,聘请了10位评委为参赛选手打分,赛前,组委会拟定了四种记分方案:方案一:取所有评委所给的平均分;
方案二:在所有评委给的分中,去掉一个最高分,去掉一个最低分,取剩余得分的平均分;
方案三:取所有评委给分的中位数;
方案四:取所有评委给分的众数.
为了探究四种记分方案的合理性,先让一名表演选手(不参加正式比赛的)演讲,让10位评委给演讲者评分,表演者得分如下表:
评委编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
打分 | 7.0 | 7.8 | 3.2 | 8.0 | 8.4 | 8.4 | 9.8 | 8.0 | 8.4 | 8.0 |
(1)请分别用上述四种方案计算表演者的得分;
(2)如果你是评委会成员,你会建议采用哪种可行的记分方案?你觉得哪几种方案不合适?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:
表一 演讲答辩得分
表二 民主测评得票
规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年00:12:14,天猫双十一总成交额超36200000000元,已超过2013年双十一全天的成交额,其中36200000000用科学记数法表示为:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(-3,-6)的抛物线经过点(-1,-4),则下列结论中错误的是( )
A. B.
C. 若点(-2,),(-5,) 在抛物线上,则 D. 关于的一元二次方程的两根为-5和-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2 , 则x1+x2=﹣ , x1x2= , 阅读下面应用韦达定理的过程:
若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2 , 求x12+x22的值.
解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列问题:
(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1 , x2 , 不解方程,求x12+x22的值;
(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=3x2的图象先向下平移3个单位,再向左平移4个单位所得的解析式为( )
A.y=3(x﹣3)2+4B.y=3(x+4)2﹣3
C.y=3(x﹣4)2+3D.y=3(x﹣4)2﹣3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com