精英家教网 > 初中数学 > 题目详情

【题目】某校举行“做文明郴州人”演讲比赛,聘请了10位评委为参赛选手打分,赛前,组委会拟定了四种记分方案:方案一:取所有评委所给的平均分;
方案二:在所有评委给的分中,去掉一个最高分,去掉一个最低分,取剩余得分的平均分;
方案三:取所有评委给分的中位数;
方案四:取所有评委给分的众数.
为了探究四种记分方案的合理性,先让一名表演选手(不参加正式比赛的)演讲,让10位评委给演讲者评分,表演者得分如下表:

评委编号

1

2

3

4

5

6

7

8

9

10

打分

7.0

7.8

3.2

8.0

8.4

8.4

9.8

8.0

8.4

8.0

(1)请分别用上述四种方案计算表演者的得分;
(2)如果你是评委会成员,你会建议采用哪种可行的记分方案?你觉得哪几种方案不合适?

【答案】【解答】解:(1)方案一最后得分:(7.0+7.8+3.2+3×8+3×8.4+9.8)=7.7;
方案二最后得分:(7.0+7.8+3×8+3×8.4)=8;
方案三最后得分:8;
方案四最后得分:8和8.4.
(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,
所以方案1不适合作为最后得分的方案;
【解析】(1)根据给出的方案和平均数的计算公式分别进行解答即可;
(2)考虑不受极值的影响,不能有两个得分等原因进行排除,即可得出答案.
【考点精析】本题主要考查了算术平均数和中位数、众数的相关知识点,需要掌握总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数;中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C∠AED的大小关系吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:x2+4x﹣5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2x3y2和﹣x3my2是同类项,则式子4m﹣24的值是( )
A.20
B.﹣20
C.28
D.﹣28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.

(1)求二次函数的解析式;

(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);

(3)在(2)的条件下,交于A、B两点,如果直线y=m与的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.

1)如图②,当α=135°时,求AE′BF′的长;

2)如图③,当0°﹤α﹤180°时, AE′BF′有什么位置关系;

3)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为(  )
A.2
B.-2
C.±2
D.±

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(x-3)(x-2)-p2=0.

(1)求证:无论p取何值时,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1、x2,且满足x12+x22=3 x1x2,求实数p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有850名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污染的频率分布表和频率分布直方图,解答下列问题:

频数

频率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

50

1.00

(1)填充频率分布表的空格;

(2)补全频数直方图,并在此图上直接绘制频数分布折线图;

(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?

(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?

查看答案和解析>>

同步练习册答案