【题目】如图,在中, 是它的角平分线, 是上的一点, , 分别平分, , ,垂足为点.
求证:( ).().
【答案】见解析.
【解析】试题分析:(1)由三角形内角和定理可知∠ABC+∠ACB=180°﹣∠BAC,然后利用角平分线的性质即可求出∠BGC=90°+∠BAC.
(2)由AD是角平分线,得到∠BAD=∠CAD,然后根据图形可知:∠1=∠BAD+∠ABG,∠2=90°﹣∠GCH,最后根据三角形的内角和定理以及外角的性质即可求出答案.
试题解析:解:(1)由三角形内角和定理可知:∠ABC+∠ACB=180°﹣∠BAC.∵BG,CG分别平分∠ABC,∠ACB,∠GBC=∠ABC,∠GCB=∠ACB,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠BAC)=90°﹣∠BAC,∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(∠ABC+∠ACB)=90°+∠BAC;
(2)∵AD是它的角平分线,∴∠BAD=∠CAD,∴∠1=∠BAD+∠ABG.∵GH⊥BC,∴∠GHC=90°,∴∠2=90°﹣∠GCH=90°﹣∠ACB=90°﹣(180°﹣∠DAC﹣∠ADC)
=∠DAC+∠ADC.
∵∠ADC=∠ABC+∠BAD,∴ ∠ADC=∠ABC+∠∠BAD=∠ABG+∠BAD,∴∠2=∠DAC+∠ADC=∠BAD+∠BAD+∠ABG=∠BAD+∠ABG,∴∠1=∠2.
科目:初中数学 来源: 题型:
【题目】如图,ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30°,AB=AC,则∠BDE的度数为( )
A. 67.5° B. 52.5° C. 45° D. 75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(请在括号里注明重要的推理依据)
如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:
价格 | 进价(元/箱) | 售价(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若该商行进贷款为1万元,则两种水果各购进多少箱?
(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的 ,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系________;
(2)如图2,过点B作BD⊥AM于点D,试说明:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E在DM上,且BE平分∠DBC,试说明∠ABE=∠AEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A(1,2).
(1)求一次函数的解析式;
(2)求直线y=kx+b与x轴的交点B的坐标;
(3)设坐标原点为O,一条直线过点B,且与两条坐标轴围成的三角形的面积是,这条直线与y轴交于点C,求直线AC对应的一次函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com