【题目】(请在括号里注明重要的推理依据)
如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
【答案】(1)∠CBD=60°;(2)不变化,∠APB=2∠ADB,证明见解析;(3)∠ABC=30°.
【解析】
试题分析:(1)由平行线的性质可求得∠ABN,再根据角平分线的定义和整体思想可求得∠CBD;
(2)由平行线的性质可得∠APB=∠PBN,∠ADB=∠DBN,再由角平分线的定义可求得结论;
(3)由平行线的性质可得到∠ACB=∠CBN=60°+∠DBN,结合条件可得到∠DBN=∠ABC,且∠ABC+∠DBN=60°,可求得∠ABC的度数.
试题解析: (1)∵AM∥BN,
∴∠A+∠ABN=180°,(两直线平行,同旁内角互补)
∵∠A=60°
∴∠ABN=120°
∵BC、BD分别平分∠ABP和∠PBN,
∴∠CBP=∠ABP, ∠DBP=∠NBP,
∴∠CBD=∠ABN=60°
(2)不变化,∠APB=2∠ADB
证明∴ ∵AM∥BN,
∴∠APB=∠PBN (两直线平行,内错角相等)
∠ADB=∠DBN (两直线平行,内错角相等)
又∵BD平分∠PBN,
∴∠PBN =2∠DBN
∴∠APB=2∠ADB
(3)∠ABC=30°
科目:初中数学 来源: 题型:
【题目】在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S-S=610-1,即5S=610-1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2016的值?你的答案是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.
(1)求证:△BCD是等腰三角形;
(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
(2)画出△ABC绕点A按逆时针旋转90°后的△AB2C2 , 并写出点C的对应点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一块面积为144cm2的正方形纸片,小欣想沿着边的方向用它裁出一块面积为98cm2无拼接的长方形纸片,且使它的长、宽之比为2:1,不知能否裁出来,正在发愁,小亮看见了说:“肯定能用一块面积大的纸片裁出一块面积小的纸片呀!”你同意小亮的观点吗?你能用这块正方形纸片裁出符合要求的长方形纸片吗?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.
(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?
(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求证:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com