精英家教网 > 初中数学 > 题目详情
8.如图,已知M(3,3),⊙M的半径为2,四边形ABCD是⊙M的内接正方形,E为AB中点,当正方形ABCD绕圆心M转动时,△OME的面积最大值为3.

分析 因为OM,ME是定值,所以当EM⊥OM时,△OME的面积最大,求出OM、EM即可解决问题.

解答 解:∵OM,ME是定值,
∴当ME⊥OM时,△OME的面积最大,
∵M(3,3),
∴OM=3$\sqrt{2}$,
∵⊙M的半径为2,
∴正方形ABCD的边长为2$\sqrt{2}$,
∴ME=$\sqrt{2}$,
∴△OME的面积的最大值=$\frac{1}{2}$•OM•ME=$\frac{1}{2}$$•3\sqrt{2}$$•\sqrt{2}$=3.
故答案为3

点评 本题考查正多边形与圆、坐标与图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图所示,已知点E,F在?ABCD的对角线BD上,且BF=DE,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若点A(a,-2)、B(4,b)在正比例函数y=kx的图象上,则下列等式一定成立的是(  )
A.a-b=6B.a+b=-10C.a•b=-8D.$\frac{a}{b}$=-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.
(1)求点D的坐标,并解释点D的实际意义;
(2)求线段DE所在直线的函数表达式;
(3)当货车出发$\frac{10}{3}$或5h时,两车相距50km.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的格点上.请你在图中找出一点D(仅一个点即可),连结DE,DF,使△DEF与△ABC全等,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲、乙两车分别从A、B两地相向而行,甲车出发0.5小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是两车离B地距离y与甲车出发时间t(小时)之间的函数图象.
(1)a=2;
(2)若甲乙两车之间的距离s(米),则s与甲车出发时间t≥a之间的函数关系式为:s=$\left\{\begin{array}{l}{140t-280(2≤t≤3.5)}\\{60t(3.5<t≤4)}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A(5,0),B(-1,0),点D在直线AC上,过点D作DE∥y轴交抛物线于点E,设点D的横坐标为m.
(1)求抛物线和直线AC的解析式;
(2)当0<m<5时,用含m的代数式表示DE的长;
(3)在(2)的条件下,当m为何值时,△CDE是轴对称图形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1所示,在A,B两地之间有汽车站C站(AC>BC),客车由A地驶往C站,货车由B地驶往A地,两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.求:

(1)A,B两地的距离;
(2)在图2中点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)
(1)求旋转木马E处到出口B处的距离;
(2)求海洋球D处到出口B处的距离(结果保留整数).

查看答案和解析>>

同步练习册答案