精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.

(1)求证:AE=AF;

(2)求证:BE=(AB+AC).

【答案】(1)详见解析;(2)详见解析.

【解析】

试题分析:(1)根据角平分线的性质及平行线的性质易AEF=AFE,即可得AE=AF;(2)作CGEM,交BA的延长线于G,已知AC=AG,根据三角形中位线定理的推论证明BE=EG,再利用三角形的中位线定理即可证得结论.

试题解析:

(1)DA平分BAC,

∴∠BAD=CAD,

ADEM,

∴∠BAD=AEF,CAD=AFE,

∴∠AEF=AFE,

AE=AF.

(2)作CGEM,交BA的延长线于G.

EFCG,

∴∠G=AEF,ACG=AFE,

∵∠AEF=AFE,

∴∠G=ACG,

AG=AC,

BM=CM.EMCG,

BE=EG,

BE=BG=(BA+AG)=(AB+AC).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图:

1)分别写出下列各点的坐标:A'_____ B'_____C'_____

2)三角形A'B'C'由三角形ABC经过怎样的平移得到?___________

3)若点Pab)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为_________

4)求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,BDAC于点D,EBC上一点,过E点作EFAC,垂足为F,过点DDHBCAB于点H.

(1)请你补全图形。

(2)求证:BDH=CEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的符号表示下列关系:

(l)a的2倍比a与3的和小; (2)y的一半与5的差是非负数;

(3)x的3倍与1的和小于x的2倍与5的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P(﹣12),则点P所在的象限为(  )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2是方程ax4的解,则a的值为(  )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:

造型花卉

A

80

40

B

50

70


(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商厦进货员在苏州发现了一种应季围巾,用8000元购进一批围巾后,发现市场还有较大的需求,又在上海用17600元购进了同一种围巾,数量恰好是在苏州所购数量的2倍,但每条比在苏州购进的多了4问某商厦在苏州、上海分别购买了多少条围巾?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).

(1)列出满足题意的关于x的不等式组,并求出x的取值范围;

(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?

查看答案和解析>>

同步练习册答案