精英家教网 > 初中数学 > 题目详情

【题目】用适当的符号表示下列关系:

(l)a的2倍比a与3的和小; (2)y的一半与5的差是非负数;

(3)x的3倍与1的和小于x的2倍与5的差.

【答案】(1)2aa+3;(2y-5≥0;(3)3x+1< 2x-5

【解析】试题分析:(1)首先表示出a2倍为2a,再表示a3的和a+3,再利用不等式表示即可;

2)首先表示y的一半为y,再表示与5的差为y-5,然后表示非负数即可;

(3)x3倍与1的和表示为3x+1,x2倍与5的差表示为2x-5,然后再抓住关键词“小于”列出不等式即可

试题解析:(1)a2倍为2a, a3的和a+3,

由题意则有:2a<a+3;

2y的一半为y再与5的差为y-5

由题意则有: y5≥0

(3)x3倍与1的和表示为3x+1,x2倍与5的差表示为2x-5,

由题意则有:3x+l<2x-5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各式因式分解:

(1) (2)

(3) (4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在下面平面直角坐标系中,已知A ,B ,C 三点.其中满足.

(1)的值;

(2)如果在第二象限内有一点 ,请用含的式子表示四边形的面积;

(3)在(2)的条件下,是否存在点,使四边形的面积为△的面积的两倍?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定两数ab之间的一种运算,记作(ab):如果,那么(ab)=c

例如:因为23=8,所以(2,8)=3.

(1)根据上述规定,填空:

(3,27)=_______,(5,1)=_______,(2, )=_______.

(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:

设(3n,4n)=x,则(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x

所以(3n,4n)=(3,4).

请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.

(1)求购买A型和B型公交车每辆各需多少万元?

(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?

(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.

(1)求证:AE=AF;

(2)求证:BE=(AB+AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的周长为36,对角线ACBD相交于点O,点ECD的中点,BD=12,求△DOE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=度.

查看答案和解析>>

同步练习册答案